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Abstract

The circumferential failure mode of spot welds is investigated under combined loading conditions. Failure mech-
anisms of spot welds under different loading conditions are first examined by the experimental observations and a plane
stress finite element analysis. An approximate limit load analysis for spot welds is then conducted to understand the
failure loads of spot welds under combinations of resultant forces and resultant moments with consideration of the
global equilibrium conditions only. The approximate limit load solution for circumferential failure is expressed in terms
of sheet thickness, nugget diameter and combinations of loads. Failure contours are generated for spot welds under
opening and shear loading conditions. The results indicate that failure contours become smaller when the ratio of the
sheet thickness to the nugget diameter increases. Based on the approximate limit load solution, a general quadratic
failure criterion for spot welds under combined three resultant forces and three resultant moments is proposed with
correction factors determined by fitting to the experimental results of spot welds under combined loading conditions.
The failure criterion can be used to characterize the failure loads of spot welds with consideration of the effects of sheet
thickness, nugget diameter and combinations of loads. Experimental spot weld failure loads under combined opening
and shear loading conditions and those under combined shear and twisting loading conditions are shown to be
characterized well by the proposed failure criterion. Finally, a simplified general failure criterion for spot welds under
three resultant forces and three resultant moments is proposed by neglecting the coupling terms of the resultant forces
and moments for convenient use of the failure criterion for engineering applications.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Resistance spot welding is widely used to join sheet metals for automotive components. Accurate spot
weld models are helpful in the structural integrity, durability, and crashworthiness analyses in the early
automotive design stages. Since spot welds in automotive components are subjected to complex service
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loading conditions, various types of specimens have been used to analyze fatigue lives of spot welds, for
example, see Hartmann (1958), Davidson (1983), Radaj (1989), Wang and Ewing (1991), Swellam et al.
(1994), Sheppard and Pan (2001) and Zhang (2001). The strengths of spot welds have also been investigated
by many researchers. For example, Hartmann (1958) discussed the mechanical tests of spot welds in ten-
sion-shear, direct tension, torsion and peel specimens. VandenBossche (1977) adopted a plasticity approach
to examine the strength of spot welds in lap-shear specimens. Sawhill and Furr (1981) and Ewing et al.
(1982) investigated the strength of spot welds in terms of the specimen geometry, welding parameter,
welding schedule, base metal strength, testing speed and testing configuration. Zuniga and Sheppard (1997)
examined the failure modes of spot welds in coach-peel and lap-shear specimens. Lee et al. (1998) adopted a
nominal stress approach to model their experimental results on the strength of spot welds in U shaped
specimens under combined tension and shear loading conditions. Wung (2001a) and Wung et al. (2001)
proposed a failure criterion based on their experimental results of spot welds in various types of specimens.
Lin et al. (2001, 2002b) investigated the failure mechanisms of spot welds in mild and HSLA steel square-
cup specimens by examining the fractographs of spot welds under combined opening and shear loading
conditions. Lin et al. (2002a, 2003) obtained an approximate limit load solution for spot welds under
combined opening and shear loading conditions and developed a failure criterion for spot welds in mild
steel specimens under static and impact combined loading conditions based on their experimental results.

The experimental observations in Lin et al. (2001, 2002b) show that failure occurs along the circum-
ference of the weld nuggets of spot welds in mild steel specimens. Fig. 1 shows the side views of failed 1.5
mm thickness specimens of mild steel under pure opening and combined opening and shear loading con-
ditions. The arrows in the figure show the loading directions. Circumferential failure can be seen under pure
opening loading conditions (with a loading angle of 0° as defined in Lin et al., 2001, 2002b) in Fig. 1(a).
Circumferential failure with a remaining lip can also be seen under combined opening and shear loading
conditions in Fig. 1(b). However, when the weld process is questionable or the weld has a weaker strength
than the base metal, spot welds may have the interfacial failure mode (through nugget failure) as discussed
in Thornton et al. (1996), Chao et al. (1998) and Peterson and Borchelt (2000).

Fig. 2 shows schematically two metal sheets jointed by a spot weld. Note that the spot weld is idealized as
a circular cylinder as shown in Fig. 2. These two sheets could be different materials with different thicknesses.
As schematically shown in Fig. 2(a), the surface tractions T, and T; are applied on the lateral sides of the
upper and lower metal sheets, respectively. When the surface tractions increase, the spot welds may fail by
different failure modes. Three possible different failure modes are shown in Fig. 2(b)-2(d) with shaded failure
surfaces. Fig. 2(b) indicates that the failure of spot weld occurs along the circumferential surface of the spot
weld in the lower sheet. Fig. 2(c) indicates that the failure of spot weld occurs along the circumferential
surface of the spot weld in the upper sheet. Fig. 2(d) shows that the spot weld fails along the interfacial

Fig. 1. Side views of 1.5 mm thickness specimens under (a) pure opening loading conditions and (b) combined opening and shear
loading conditions. The arrows indicate the loading directions.
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Fig. 2. Two sheets joined by a spot weld may fail under circumferential or interfacial failure modes. (a) Two sheet metals joined by a
spot weld under surface tractions T, and 7. (b) The spot weld may fail near the circumferential surface shown as the shaded region in
the lower sheet. (c) The spot weld may fail near the circumferential surface shown as the shaded region in the upper sheet. (d) The spot
weld may fail along the interfacial surface shown as the shaded region between the two sheets.

surface of the spot weld between two metal sheets. The failure of the spot weld is determined by the com-
petition of these three failure modes (two circumferential failure modes and one interfacial failure mode).
The spot weld fails when the load first satisfies one of the failure conditions of these three failure modes as the
load increases. Therefore, the failure conditions need to be investigated for both circumferential and in-
terfacial failure modes. In this paper, we will concentrate on the circumferential failure mode of spot welds.
Since spot welds in structural components often fail under combined loads during vehicle crashes, a
general failure criterion for spot welds under combined loads is helpful for the crashworthiness analysis in
the early automotive design stage. A general failure criterion for spot welds can be implemented into finite
element codes for accurate simulations of the crush of spot welded structural components. In this paper, the
failure mechanisms of spot welds under different loading conditions are first examined. We then try to
investigate the failure loads of spot welds under combined three resultant forces and three resultant mo-
ments for the circumferential failure mode. An approximate limit load analysis is performed to investigate
the effects of combinations of loads, sheet thickness and nugget diameter. Based on the approximate limit
load solution and the experimental results, a general failure criterion is proposed. Finally, a simplified
general failure criterion is proposed for easy use of the failure criterion for engineering applications.

2. Failure mechanisms

2.1. Experimental observations

A comparison of the micrographs shown in Lin et al. (2001, 2002b) suggests that extensive plastic de-
formation occurs near the circumferential surface when spot welds are subjected to loads to failure. The
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Fig. 3. (a) A micrograph of the cross-section of a failed spot weld in a 1.5 mm thickness specimen under pure opening loading
conditions. (b) A micrograph of the cross-section of a failed spot weld in a 1.5 mm thickness specimen under combined opening and
shear loading conditions.

failure mechanisms are asymmetrical when resultant shear forces were applied. Fig. 3(a) shows a micro-
graph of the cross-section of a failed spot weld in a 1.5 mm thickness specimen under opening loading
conditions (Lin et al., 2002b). The arrow in the figure shows the loading direction. The figure shows that the
spot weld appears to fail only by the through thickness shear near the nugget circumferential surface. Fig.
3(b) shows a micrograph of the cross-section of a failed spot weld in a 1.5 mm thickness specimen under
combined opening and shear loading conditions (Lin et al., 2002b). Again, the arrow in the figure shows the
loading direction. The load can be decomposed into an opening component to open the spot weld and a
shear component to shear the spot weld. As shown in the figure, necking due to stretching appears close to
the weld nugget in the left lower leg, as marked by Leg 1. Therefore, it appears that the fracture was
initiated by necking/shear in the right upper leg at point A, as marked in Fig. 3(b). Then the failure
propagated around the circumference of the nugget (marked by B) by necking/shear. Finally, the sheet
metal on the top part of the specimen was torn off and left a lip (marked by C) on the spot weld after the
two parts of the specimen separated. Based on observations from Figs. 1(b) and 3(b), spot welds failed
initially near the right half nugget in the base metal when the resultant shear force induced more tensile
stretching to the right half of the upper sheet near the nugget.

2.2. Plane stress finite element analysis

Lin et al. (2003) conducted a plane stress finite element analysis for a large square sheet with a circular
rigid inclusion at the center to simulate a spot weld under shear loading conditions. In general, micro-
hardness tests of steel spot welds show that the hardness is higher in the weld nugget than that of the base
metal (for example, see Zuniga and Sheppard, 1995). The high hardness value in the weld nugget suggests a
higher yield strength for the weld nugget than that of the base metal. When steel spot welds are subjected to
large loads, large plastic deformation and failure occur outside the weld nugget as shown in Figs. 1 and 3.
Therefore, the nugget is assumed to be a rigid circular inclusion in the plane stress finite element analysis in
Lin et al. (2003). In Lin et al. (2003), the rigid circular inclusion is fixed and a positive displacement in the x
direction is applied along the outer boundary of the sheet. The sheet material is assumed to follow an elastic
perfectly plastic behavior. Fig. 4(a) shows an undeformed mesh of the finite element model near the rigid
circular inclusion. Fig. 4(b) shows the contour of the plastic strain ¢, from the finite element analysis based
on the deformed mesh. Note that the displacement of the deformed mesh shown in the figure is magnified
by 500% in order to show the deformation of elements clearly. As shown in Fig. 4(b), the tensile plastic
strain &,, becomes large only near the right part of the circumferential surface. This suggests that the large
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Fig. 4. (a) An undeformed mesh of the finite element model near the rigid circular inclusion. (b) Distribution of the plastic strain &,
near a rigid circular inclusion in a large thin sheet with in-plane displacement applied along the boundary.

tensile plastic strain ¢, near the right part of the circumferential surface is most likely responsible for the
necking/shear failure of the sheet metal for spot welds under shear dominant loading conditions. In
summary, when spot welds are subjected to dominant in-plane shear loads, extensive tensile plastic de-
formation occurs only near a partial circumferential surface of the weld nugget. In order to develop a
failure criterion for the spot welds under general combined loading conditions, plastic collapse is considered
only on a partial nugget circumferential surface when resultant shear forces or moments are applied.

3. An approximate limit load analysis

Based on the experimental observations and finite element analysis, a limit load approach is adopted for
spot welds under combined loading conditions. For the limit load approach, rigid perfectly plastic material
behavior is first assumed. Note that the limit load approach is commonly used to obtain the maximum load
carrying capacity of structures where plastic deformation is extensive at failure. For example, Merkle and
Corten (1974) conducted a lower bound limit load analysis for the material ahead of the crack tip to es-
timate the J-integral for a compact tension specimen. In their lower bound limit load analysis, they mainly
considered the global equilibrium. However, their approach still gave a good engineering solution which
has been adopted in many subsequent engineering fracture analyses, for example, see Chapter 12 in An-
derson (1995), and Pan (1984, 1986) for limit load analyses of cracked pipes. As for spot weld problems, the
limit load approach conducted by Lin et al. (2002a) with consideration of the global equilibrium appears to
give a good engineering solution to characterize the failure loads of spot welds under combined opening
and shear loading conditions. We will follow the same strategy as the investigations mentioned earlier to
develop an engineering solution under combined loading conditions.

Fig. 5(a) shows schematically two metal sheets joined by a spot weld. As shown in Fig. 5(a), the surface
tractions T, and T, are applied on the lateral sides of the upper and lower metal sheets, respectively. As
mentioned earlier, we idealize the weld nugget as a circular cylinder as shown in Fig. 5(a). Fig. 5(a) also
shows a Cartesian coordinate system where x and y represent the in-plane coordinates, and z represents the
out-of-plane coordinate. The origin of the Cartesian coordinate system is located at the center of the in-
terfacial circular cross-section of the weld nugget between the two sheets as shown. Note that the directions
of the x and y axes of the Cartesian coordinate system must coincide with the directions of the nominal
principal bending moments of the sheet near the weld nugget to avoid the consideration of the twisting
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Fig. 5. (a) Two sheet metals are joined by a spot weld under the surface tractions T, and 7). The surface tractions and a Cartesian
coordinate system are shown. (b) The lower sheet with the lower half nugget is shown under the surface tractions 7T and T\,. (c) The
surface traction T, on the top surface of the lower half nugget is represented by a resultant force P and a resultant moment M. (d) The
lower half nugget is considered solely with the surface traction T, on the nugget circumferential surface to balance the resultant loads.

component of the nominal moments. For this limit load analysis, we only consider the lower half of weld
nugget in the thinner sheet as shown in Fig. 5(b) without loss of generality. Fig. 5(b) shows that the surface
traction T, is on the top surface of the lower half nugget in the thinner sheet. Fig. 5(c) shows that the
surface traction T, can also be expressed as a resultant force P and a resultant moment M at the center of
the interfacial nugget surface. If only the lower half nugget is considered, the resultant loads P and M
should be balanced by the surface traction T. along the nugget circumferential surface in a free body
diagram for the lower half nugget as shown in Fig. 5(d).

Note that in order to develop a limit load solution, the equilibrium conditions need to be satisfied. In the
main text, we only conducted an approximate limit load analysis with consideration of the global equi-
librium conditions. The details and the difficulty to find a stress distribution to satisfy the local equilibrium
conditions near the circumferential surface of the lower half nugget are discussed in Appendix A. Here, we
consider the stresses along the nugget circumferential surface but with respect to the Cartesian coordinate
system due to resultant loads P and M. It is helpful to imagine that a rectangular box outside the lower half
nugget as shown in Fig. 6(a) to evaluate the stresses along the nugget circumferential surface with respect to
a Cartesian coordinate system. All the stresses with respect to Cartesian coordinate system along the cir-
cumferential surface of the lower half nugget are used to balance the resultant force and the resultant
moment on the top surface of the lower half nugget. The resultant force and the resultant moment on the
top surface of the lower half nugget are decomposed into three forces P, P, and P. and three moments /,,
M, and M. as shown in Fig. 6(a). The stresses with respect to the Cartesian coordinate system are expressed
schematically in the physical directions to balance the positive resultant forces and resultant moments.
Here, o,,, 0,, and g,, represent the average in-plane stresses, and o,, and o,, represent the average out-of-
plane shear stresses on the lateral surfaces. Note that, in this limit load analysis, we only consider the case of
the lower half nugget under three forces, P, P, and P., and two in-plane bending moments, M, and M,. The
difficulty of considering the twisting moment M, in this limit load analysis will be discussed in Appendix B.
Note that a cylindrical coordinate system as shown in Fig. 6(b) is also adopted to conveniently to integrate
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Fig. 6. The lower half nugget is subjected to the resultant force P and the resultant moment M, which are decomposed into the
components with respect to a Cartesian coordinate system. The resultant loads are balanced by the assumed stresses along the cir-
cumferential surface of the spot welds (a) in the Cartesian coordinate system and (b) in the cylindrical coordinate system.

the stresses along the circumferential surface to balance the resultant forces and moments on the top surface
of the lower half nugget in the approximate limit load analysis. The von Mises yield criterion is employed to
develop the approximate limit load solution. The detailed stress states on the circumferential surface of the
weld nugget with respect to both the Cartesian and cylindrical coordinate systems due to each of the force
and moment components are discussed in the following.

3.1. Stresses due to bending moments M, and M,

Fig. 7 shows a side view of the lower half nugget with assumed loads and average stresses. As shown in
Fig. 7(a), an average shear stress o2’ acting on the circumferential surface of the nugget is assumed to
balance the moment M,. Here, o represents the average value of o,. through the thickness due to the
moment M,. Note that the physical directions of o due to M, are shown in Fig. 7(a). Now, we are seeking

a distribution of o' as a function of 6 based on the assumption of the uniform shear stress o along the
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Fig. 7. (a) A side view of the lower half nugget under the moment M,, the shear load P, and the assumed stresses, (b) a top view of the
shear stress ¢/ due to the shear load P, on the lower half nugget.

nugget circumference. Note that other contributions to the shear stress ¢, due to the opening and shear
loads will be discussed later. The shear stress oy can be referred to the cylindrical coordinate as

oM = M cos 0 (1)
oy = —a" sin @ (2)

Here, or” and 09 " represent the shear stress components due to the moment M,. Since the moment M, is
balanced by the shear stress o, the moment balance in the y direction with respect to the lower half nugget
requires

M, — / (rcos0)trdd =0 (3)

where 7 is the nugget radius and ¢ is the sheet thickness. Since oy’ is assumed to be a constant, o’ can be
derived as

v M, 4M,

Y = — = = 4
O nrlt  mD%*t (4)

where D is the nugget diameter. Note that we need to use the cylindrical coordinate system to conveniently
integrate the contribution of the shear stress or to the bending moment. Similarly, we can obtain aj‘j due
to the moment M, as

M, M, 4M,

, - _ 5
%2 nrit nD?t (5)

3.2. Stresses due to shear loads P, and P,

3.2.1. Normal stresses

We assume that the shear loads P, and P, are balanced by the average normal stresses o, and o,,. We
now discuss the stress due to the shear load P, first. Fig. 7(a) shows the side view of the weld nugget
subjected to a shear load P, and the corresponding stress o,,. The physical directions of g,, on the two sides
of the nugget are shown in Fig. 7(a). The stress o,, due to shear load P, is positive for the left part and
negative for the right part of the lower half nugget as show in Fig. 7(a). One can consider that the assumed
stress state comes from the fact that the shear load P, on the surface of the lower half nugget pulls the left
part of the adjacent material and pushes the right part of the adjacent material. The assumption of the
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stress state is physical by referring to the deformed mesh as shown in Fig. 4(b). Note that the deformed
mesh as shown in Fig. 4(b) can be related to the deformation mode of a spot weld under a negative resultant
force P, applied on the top surface of the lower half nugget. We here assume that the stresses g,,, agp and 4,4
of the material element are derived from the stress state where o, is uniform and o,, = 0 for the in-plane
stresses for the left and right half of the nugget surface due to the shear load P.. The average stress o,
through the thickness is assumed to act along the mid-plane of the lower half nugget. The normal stress o,
can be written as

P,
x = - 6
e = Fop, (6)
In Eq. (6), “-" is for the right half of the lower nugget and “+” is for the left half of the lower nugget.
The stresses on the circumferential surface can now be referred to the cylindrical coordinate system as
o = g, cos’ 0 (7)
ol = —a,, sin0cos 0 (8)
agg = 0y sin” 0 )
Similarly, the stress ,, due to the shear load P, can be written as
P,
— v 10
= Fop (10)

Note that the stress g,, due to the shear load P, is positive for the front part and negative for the back part
of the lower half nugget as defined in Fig. 6(a). The stresses on the circumferential surface can also be
referred to the cylindrical coordinate system as

o’ = g,,sin’* 0 (11)

o) = a,,sinfcos 0 (12)
B 2

Gy = Oy, COs~ 0 (13)

Note that the sign of o,, is different for the right and the left part of the lower nugget and the sign of g, is
different for the front and back part of the lower nugget. Therefore, there are four stress states for g, and
o,, for the regions of =0 to n/2, n/2 to =, @ to 3n/2, and 3n/2 to 2n along the circumferential surface.

3.2.2. Shear stresses

As shown in Fig. 7(a), an average shear stress ¢’* acting on the circumferential surface of lower half
nugget is needed to balance the moment due to the shear load P, and the average stress o,,. Here, ¢%
represents the average value of g,. through the thickness due to P,. Now, we are seeking a distribution of ¢*
as a function of 0. First, we consider a distribution of ¢ to represent the shear load P, acting on the top
surface of the lower half nugget as shown in Fig. 7(b). The shear stress due to P, can be referred to the

cylindrical coordinate system as

o = o’ cos 0 (14)
ol = —c%sin0 (15)

Here, ¢ and o}’ represent the components of the shear stress due to the shear load P.. Note that another
contribution to the shear stress o,. due to the opening load P, will be discussed later. The moment balance in
the y direction with respect to the lower half nugget requires



5548 S.-H. Lin et al. | International Journal of Solids and Structures 40 (2003) 5539-5564

2n

t
(rf;(rcose)trdH—Pxizo (16)
0
When ¢’ is assumed to be a constant, ¢’ can be derived as
P, 2P,
= =2 17
e 2nr:  nD? (17)
Similarly, the shear stress o)} due to the shear load P, can be written as
P, 2P,
P Ty ) 13
%2 T o2 T e (18)
The shear stresses due to P, and P, can be referred to the cylindrical coordinate system as
— P Py i
0. =0,;cos0+ 0 sin0 (19)
0p. = —a'*sin 0 + % cos 0 (20)

3.3. Stresses due to opening load P,

Fig. 8(a) shows the lower half nugget under the opening load P, on the interfacial surface and shear
forces Py right> Peeft> Przback and Py grone ON the circumference surface. The opening load P, is balanced by
shear forces Py sight, Peeft> Pyzpack and Py grone. The equilibrium requires

Pz = szﬁright + sz,left + P}z,back + P)z,front (21)

Here, we define P, = Py sight + Prejert and P, = Py pack + Py front- NOW, we define a distribution parameter o
for spot welds under different opening loading conditions as

PYZ
o= P (22)
When we assume a spot weld as a spring with a point property in a finite element analysis, the transverse
shear forces from the finite element analysis for the elements neighboring the spot welds can be obtained to
determine «. For example, « = 1 for spot welds under uniaxial opening loading conditions as in U shaped
specimens used in Lee et al. (1998) and o = 0.5 for spot welds under equal biaxial opening loading con-
ditions as in square-cup specimens used in Lin et al. (2001). With the distribution parameter o, we can write

P.=oP. (23)
and
P.=(1-o)P. (24)

In order to account for more general opening loading conditions, we introduce two more distribution
parameters as

1 xz,r1
. ,nght (253)
and
1 Jback 1

yz
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Fig. 8. (a) The lower half nugget subjected to the opening load P.. The opening load P. can be balanced by the shear forces Py right, Pe- et
P pack and P o along the circumferential surface of the weld nugget. The imaginary box enclosed the spot weld is also shown for
demonstration of selection of the shear forces. (b) The side views of the lower half nugget, viewed from the x axis and the y axis. The
opening loads are balanced by the average shear stresses o,=-"™, o=, g% and ¢"™", due to the shear forces, Prz rights Pezjefts Przback

and P, sront, and the average shear stresses 7% and o’ due to unbalanced moments m, and m,.

Note that the two more distribution parameters are used to account for the different distributions of the
shear forces P.. and P,. on the nugget circumferential surface. With the distribution parameters y, and y,, we
can write

P right = 7Pz (26)
Pejere = (1 = 7:) P (27)
Pypack = 7, B2 (28)
Pezgront = (1 = 7,) Pz (29)

The values of distribution parameters y, and 7, are between 0 and 1 based on the distributions of the
opening load. For example, 7, and 7, are equal to 0.5 when the entire circumferential surface of the lower
half nugget carries the load uniformly. If we assume that shear stresses o rights O left> Tz back aANd Oy front
corresponding to Py rights Pezlefts Przpack aNd Py gront, are uniformly distributed along the nugget circumfer-
ential surface. The average shear stresses oy right> O left> sz back ad Oy frone Can be written as

} szri ht Y Rcz Y Od)z
OPx:.nght — eht _ _ /x — _ !X 30
“ Dt Dt Dt (30)
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szleft (1 - y}r) (1 - “/X)O(P

gl — (31)
= Dt Dt Dt

Ptk — _P)zback _ ’ny)Z _ ’))y(l B O()})Z (32)
” Dt Dt Dt

O-iz,fmnt _ Rw,front _ (1 - ’))y)RVZ _ (1 - y})(l - a)PZ (33)

Dt Dt Dt

P Py P, ..
Note that the stresses o2 and ¢,7"™* are negative, and the stresses ox"™" and a,; are positive when a

positive opening load P is applied on the lower half nugget. When the distribution parameters y, and y, are
not equal to 0.5, shear stresses oy, and o) along the circumferential surface are needed to balance the mo-
ments m, and m,, which are generated by the uneven shear forces P, right, Pre-jteft> Pz pack and Py front. We now
discuss the stresses due to the moment m, first. As shown in Fig. 8(b), an average shear stress 02" acting on the
circumferential surface of the nugget is needed to balance the moment m, generated by the shear forces Py righ(
and P,. .. Here, o2 represents the average value of g,. through the thickness due to m,. As shown in Fig. 8(b),
o and gl represent the average values of o,. through thickness due to Py yight and Py i, respectively.

Now, we are seeking a distribution of ¢’ as a function of 0. Note that the superscript / of shear stress ¢”,
represents the balancing moment m, or uneven shear forces P o and P.jr. The shear stress can be
referred to the cylindrical coordinate system as

Py back Jfront

ol =d! cosl (34)

o), = —a'_sin0 (35)
Here, ¢! and o), represent the components of the shear stress due to the balancing moment 2, or uneven
shear forces P igne and Py e The equilibrium in the y direction requires
n/2 3n/2 2n
/ o= (r cos 0)trd6) + o=t (r cos 0)trd6) + / o (rcos 0)rdd = 0 (36)
—n/2 /2 0

When oy is assumed to be a constant, oy can be derived as

oP,
== (2 — 1 2y, — 1
= G ) =5 (20— 1) (37)
Similarly, we can obtain ¢} as
P, 1 —a)P,
o=, =U gy (38)

Based on the stress analyses, the total shear stresses o,. and ¢,. can be written as

P 2P 4M,
R T R e it Ml 39
O = O T 0 F 0 T 0 = Fon T ap Ty %)
— 3 My P, S (1 - (x)[)z 2Py 4Mx
=0 T OO O =T T e by (40)

In Eq. (39), “-" is for the right part and “+” is for the left part. In Eq. (40), “-"" is for the back part and
“+” is for the front part. Note that the stress o, is different for the right and the left part of the nugget and
the stress o, is different for the front and back part of the nugget. Note that y, and y, do not appear in Egs.
(39) and (40), respectively. Therefore, there are four stress states for o,. and o,. for the regions of § = 0 to
n/2, n/2 to m, m to 3n/2, and 37/2 to 2n along the circumferential surface.
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3.4. Approximate limit load solution

Based on the previous sections, the stress states in the Cartesian coordinate system along the circum-
ferential surface of the nugget are obtained. Note that o, and o,, are expressed in Egs. (6) and (10), and a,.
and ¢,. are expressed in Eqgs. (39) and (40). As discussed earlier, the directions of the x and y axes of the
Cartesian coordinate system are selected to coincide with those of the nominal principal bending moments
of the sheet near the weld nugget to avoid the consideration of the twisting component of the nominal
moments. Also, the twisting moment M, is not considered in the approximate limit load analysis. Therefore,
0., 1s considered to be zero. Note that the difficulty of considering the twisting moment M. in the ap-
proximate limit load analysis will be discussed in Appendix B. With the assumption of ., = 0, the von
Mises yield criterion can now be expressed as

aix — 00y + O'fy + 30@ + 30')22 = 313 (41)

where 7, is the shear yield stress.
Here, we define the effective shear stress 7. as

1 1
= gafx ~ 300 + 30’”} + 02 + a (42)
We can also define the normalized loads and moments as
~ P
pP=—— 43
2DtT0 ( )
- M. 4
M =—— 44
/ 2Dtty nD ( )

where the subscript i represents x, y or z and the subscript j represents x and y. The normalized effective
stress 7. satisfying the yield criterion can be rewritten as

1 1 1 . 55 [ S s (4 ~1°
T, = EPXZ + 3P2 - §s1gn(o—§)s1gn(of;)PxPy + {mgn( 2 )oP. 4 P, (E) + 2My]

+ |sign(o)(1 — )P, +i>y(4—lg> - 21?42 =1 (45)

Here, 51gn( P, mgn(aW) sign(o”2) and sign(c yz) represent the signs of corresponding stresses in each of the
four regions. On the right hand 51de of Eq. (45), the first three terms related to o,, and o,, are due to P, and
P,. The last two terms related to o,, and o), are due to P., P, P,, M, and M,. As shown in Fig. 9, we define
region I for 6 =0 to =n/2, region Il for 6 = /2 to =, region IH for 6 == to 3n/2, and region IV for
0 = 37/2 to 2n. The values of the four sign functions for the four regions are shown in Fig. 9. For a given
monotonically increasing loading condition, when the stress state in one of regions satisfies the yield cri-
terion (7 = 1), the plastic collapse or failure is assumed to take place in the region. The details of plastic
collapse condition are discussed in Appendix B. Note that, « = 1 for uniaxial opening loading conditions
and o = 1/2 for equal biaxial opening loading conditions.

3.5. Special cases
Here we consider the case of combined opening load P, and shear load P.. Eq. (45) becomes
1~ 4 ~
7= ngz + |sign(c™)aP, + P, ( ;)} +[(1-0)P) =1 (46)

For the case that both P, and P, are positive, the left half of the circumferential surface (regions Il and III) with
sign(o’:) = 1 will first satisfy the yield criterion. Fig. 10 shows the approximate limit load solutions under
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Fig. 9. The signs of the stresses in each of four regions in the yield criterion.

both equal biaxial (¢ = 0.5) and uniaxial (¢ = 1) opening loading conditions for spot welds with the ratios of
t/D =0, 0.1 and 0.2. Note that ¢/D = 0 represents the case that the thickness dependence is not presented in
the yield criterion. As shown in Fig. 10, the normalized limit load P. for spot welds under equal biaxial
opening loading conditions is higher than that under uniaxial opening loading conditions for a given P,. Fig.
10 also shows that for a given P, the normalized limit load P, decreases when the ratio of #/D increases under
both loading conditions. Note that, when we consider the case of pure opening modes (P, = 0), the ratio of
the limit load under biaxial opening loading conditions to that under uniaxial opening loading conditions is
/2 according to Eq. (46). This means that spot welds under biaxial opening loading conditions can carry 41%
more loads than those under uniaxial opening loading conditions as shown in Fig. 10.

4. A general failure criterion

In order to develop a general failure criterion for spot welds under combined loading conditions, the
limit loads in the yield criterion of Eq. (45) are modified to fit the experimental failure loads under com-
bined loading conditions. First, the failure loads from combined load experiments are normalized as
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2_ ----------------- 0=05,t/D=0
B — — — 0=05,t/D=0.1
———— 0=05,t/D=0.2
i 0=1,t/D=0
16 — — — @=1,t/D=01

Fig. 10. The yield contours in terms of P. and P, for spot welds under combined loading conditions with various ratios of ¢#/D. Here,
both biaxial and uniaxial opening loads with o = 0.5 and 1, respectively, are considered.

_ P

Pi == d 47
Pmax ( )

_ M. 4

M=t = 48
Pmax nD ( )

where the subscript i represents x, y or z and P, represents the failure load of spot welds under pure
uniaxial opening loading conditions. Based on the experimental results and the approximate limit load
solution in Eq. (45), a general failure criterion is proposed as

| R | R 1. . — —
3 (kpxny)z + 3 (kPXva)z -3 s1gn(of;)51gn(afy")k,2,xnyPy + (kMzMZ)Z
e = _ 4 1 1. ., _ _ 4 7
+ |sign(o,;)oP. + kp, Py - + 2k M, | + |sign(o);)(1 — 0)P. + kp, P, - )" 2ky M. =1

(49)

Here, the contribution of the twisting moment is accounted for by assuming a quadratic term of A_422 to fit
the experimental results. In Eq. (49), we include only three correction factors, kp,, ky. and ky,,, to fit the
experimental results based on the assumption of material in-plane isotropy within the x—y plane.

In order to demonstrate the applicability of the general failure criterion for mild steel spot welds, we first
consider the case of spot welds under combined opening and shear loads. For the case that both P, and P,
are positive, the left half of the circumferential surface (regions II and IIT) with sign(¢’2) = 1 will first satisfy
the yield condition. For this case, Eq. (49) is reduced to

1 4¢

3 (kp, P.) + {od_’Z + kp, P, < 5 )} 2 +[(1-w)P) =1 (50)
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Based on the experimental results for U shaped specimens (o = 1) presented in Lee et al. (1998) and those
for square-cup specimens (x = 0.5) presented in Lin et al. (2002a), kp,, can be estimated as 1.11 for these
mild steel specimens. Fig. 11 shows the results based on the failure criterion in Eq. (50) and the results of

2r A D = 4.3 mm, (t/ D = 0.207), Experimental Results
- QRS D = 4.3 mm, (t/ D = 0.207), Failure Criterion Results
- [m] D = 6.4 mm, (t/ D = 0.139), Experimental Results
 ———— D =6.4 mm, (t/D = 0.139), Failure Criterion Results
16
12

[ ]
I T I |
1.6 2
2r [m] t=1.0 mm, (t/ D = 0.156), Experimental Results
F ——— t=1.0 mm, (t/ D = 0.156), Failure Criterion Results
- A t=1.5 mm, (t/ D = 0.234), Experimental Results

L « t=1.5 mm, (t/ D = 0.234), Failure Criterion Results

Fig. 11. (a) The normalized failure loads for spot weld with two different nugget sizes in U shaped specimens under combined opening
and shear loads. Various symbols represent the experimental results and two different lines represent the results based on the failure
criterion in Eq. (50). (b) The normalized failure loads for spot welds in square-cup specimens with two different thicknesses under
combined opening and shear loads. Various symbols represent the experimental results and two different lines represent the results
based on the failure criterion in Eq. (50).
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experiments for spot welds under combined opening and shear loading conditions. Fig. 11(a) shows the
normalized failure loads as various symbols for mild steel spot welds in U shaped specimens under com-
bined opening and shear loads (Lee et al., 1998). A picture of the U shaped specimen is also shown as an
insert in the figure. These experimental data were obtained from two different nugget diameters (D = 4.3
and 6.4 mm) and one sheet thickness (# = 0.89 mm). Note that the U shaped specimens are subjected to
uniaxial opening loading conditions and therefore o = 1. The experimental results are normalized by the
maximum load of U shaped specimens under pure opening loading conditions. In the figure, the solid and
dotted lines represent the results based on the failure criterion in Eq. (50). The failure contours appear to
agree well with the experimental results. As shown in Fig. 11(a), when the ratio ¢/D increases, the failure
contours based on both the experiments and the failure criterion in Eq. (50) become smaller.

Fig. 11(b) shows the normalized failure loads as various symbols for mild steel spot welds in square-cup
specimens under combined opening and shear loads (Lin et al., 2002a). A picture of the square-cup
specimen is also shown as an insert in the figure. These experimental data were obtained from one nugget
diameter (D = 6.4 mm) and two different sheet thicknesses (# = 1 and 1.5 mm). Note that the specimens are
subjected to equal biaxial opening loading conditions and therefore o = 0.5. The experimental results
should be normalized by the maximum load of U shaped specimens under pure uniaxial opening loading
conditions. However, the maximum load for U shaped specimens for this mild steel is not available. The
maximum load for U shaped specimens is therefore estimated from the maximum loads for the cup
specimens divided by v/2. In the figure, the solid and dotted lines represent the results based on the failure
criterion in Eq. (50). The failure contours appear to agree with the experimental results with slight un-
derestimation. As shown in Fig. 11(b), when the ratio ¢/D increases, the failure contours based on both the
experiments and the failure criterion in Eq. (50) become smaller. As shown in Fig. 10(a) and 10(b), the
normalized limit load P. shown in Fig. 11(a) is lower for spot welds in U shaped specimens under uniaxial
opening loading conditions than that in square-cup specimens shown in Fig. 11(b) under equal biaxial
opening loading conditions for a given P,. The results based on the experiments and the failure criterion in
Eq. (50) shown in Fig. 10(a) and 10(b) demonstrate the need of « in the failure criterion in Eq. (50).

Finally, we examine the case of spot welds under combined twisting moment M., and shear load P,. Eq.
(49) is reduced to

1 (4

3 + (nD)
Note that the effect of bending due to the shear load P, is accounted for by the term containing 4¢/7D in Eq.
(51). The factor kp,, is estimated to be 1.11 based on the experimental results under combined opening and
shear loading conditions. By comparing the experimental results, the effect of the twisting moment M, is
accounted for by a quadratic term of (ky M.)” in Eq. (51). Experimental results under combined twisting
and shear loading conditions are available from Wung (2001b) using asymmetric lap-shear specimens where
the weld nuggets are not located along the load application lines or the symmetric lines of the specimens.
Fig. 12 shows the normalized experimental results as symbols and the results based on the failure criterion
in Eq. (51) as a solid line for mild steel spot welds under combined twisting and shear loading conditions
(Wung, 2001b). A picture of the asymmetric lap-shear specimen is also shown as an insert in the figure.
These experimental data were obtained from one nugget diameter (D = 6.7 mm) and one sheet thickness
(t=0.91 mm). The failure contour appears to agree well with the experimental results. Note that the
twisting moment M, and the shear load P, are normalized by the maximum load under pure uniaxial
opening loading conditions. The maximum load under pure uniaxial opening loading conditions is esti-
mated by Eq. (51) and the experimental maximum load for symmetric or regular lap-shear specimens where
the twisting moment M, is zero at the nugget. According to the normalized experimental results shown in
Fig. 12, the factor k. can be estimated as 1.08. When the testing results for spot welds in other types of

(kp, P)* + (ky,M.)* = 1 (51)
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Fig. 12. The normalized failure loads for specimens under combined twisting and shear loading conditions. The symbols represent the
experimental results and the solid line represents the results based on the failure criterion in Eq. (51).

specimens are available, we can determine the third correction factor k. The correction factors in general
depend upon the weld nugget size, sheet thickness, sheet material and welding process.

5. A simplified general failure criterion for spot welds

The failure loads of spot welds under combined loading conditions can be obtained by the general failure
criterion based on Eq. (49). However, before we adopt this failure criterion, we need to determine the
directions of the principal bending moments for the base metal sheet near the spot weld of interest. Note
that our Cartesian coordinate system should be fixed to the directions of the principal bending moments to
avoid the consideration of the moment M,,. When the load distribution near the spot weld becomes
complex, the distribution parameter o needs to be estimated. However, this procedure may not be con-
venient for implementation of the general failure criterion into finite element codes since the components or
vehicles needed to be analyzed may contain hundreds or thousands of spot welds. In order to develop a
failure criterion for spot welds for easy use, we propose a simplified general failure criterion for spot welds
by neglecting the coupling terms of the resultant forces and moments as

L[4 ?
3 nD

where o depends upon the local transverse shear force ratio as in Egs. (23) and (24) near the spot weld. Note
again the forces and moments are still normalized by the pure uniaxial opening failure loads. On the left
hand side of Eq. (52), the first term represents the contribution from the out-of-plane opening force, the

second term represents the contribution from in-plane shear force, the third term represents the contri-
bution from the twisting moment with respect to the out-of-plane coordinate z, and the fourth term rep-

—2 —=2 —2 —2 —2
(P,+P,)+ kjLMZ + 4k§4n (M, +M,) =1 (52)

=2
[1 — 20+ 2%P. + ké‘_
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resents the contribution from the in-plane bending moment. These three correction factors kp,,, ki, and ky,,
are determined from the experimental results under combined loading conditions.

2r A D = 4.3 mm, Experimental Results
- m} D = 6.4 mm, Experimental Results
= oo D= 4.3 mm, Failure Criterion Results
1 ——— D = 6.4 mm, Failure Criterion Results
16 — — — D =4.3 mm, Simplified Criterion Results

T D = 6.4 mm, Simplified Criterion Results

2 [m} t=1.0 mm, Experimental Results
- A t=1.5 mm, Experimental Results
L t = 1.0 mm, Failure Criterion Results
i ~ t=1.5 mm, Failure Criterion Results
16k ————— t = 1.0 mm, Simplified Criterion Results

— — — t=1.5 mm, Simplified Criterion Results

Fig. 13. (a) The normalized failure loads for spot weld with two different nugget sizes in U shaped specimens under combined opening
and shear loads. Various symbols represent the experimental results and different lines represent the results based on the failure cri-
terion in Eq. (50) and the simplified failure criterion in Eq. (53). (b) The normalized failure loads for spot welds in square-cup
specimens with two different thicknesses under combined opening and shear loads. Various symbols represent the experimental results
and different lines represent the results based on the failure criterion in Eq. (50) and the simplified failure criterion in Eq. (53).
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In order to understand the difference between the simplified general failure criterion in Eq. (52) and the
failure criterion in Eq. (49), the experimental results for spot welds under combined opening and shear
loading conditions are used to compare the results based on the both failure criteria. For this loading
condition, Eq. (52) is reduced to

1 4\’
3 + < n'D)
Based on the experimental results for U shaped specimens (o = 1) presented in Lee et al. (1998) and those
for square-cup specimens (« = 0.5) in Lin et al. (2002a), kp, can now be estimated as 1.25. Fig. 13 shows the
results based on the failure criterion in Eq. (50) and the simplified failure criterion in Eq. (53), and the
experimental results under combined opening and shear loading conditions. Fig. 13(a) shows the nor-
malized failure loads as various symbols for mild steel spot welds in U shaped specimens under combined
opening and shear loads (Lee et al., 1998). A picture of the U shaped specimen is also shown as an insert in
the figure. Note that the U shaped specimens are subjected to uniaxial opening loading conditions and
therefore o = 1. In the figure, the solid and dotted lines represent the results based on the failure criterion in
Eq. (50) and the dashed-doted and dashed lines represent the results based on the simplified failure criterion
in Eq. (53). The failure contours based on the failure criterion in Eq. (50) appear to agree with the ex-
perimental results. The failure contours based on the simplified failure criterion in Eq. (53) are slightly
larger than those based on the failure criterion in Eq. (50) under combined opening and shear loading
conditions. Fig. 13(b) shows the normalized failure loads as various symbols for mild steel spot welds in
square-cup specimens under combined opening and shear loads (Lin et al., 2002a). A picture of the square-
cup specimen is also shown as an insert in the figure. Note that the specimens are subjected to equal biaxial
opening loading conditions and therefore « = 0.5. In the figure, the solid and dotted lines represent the
results based on the failure criterion in Eq. (50) and the dashed-doted and dashed lines represent the results
based on the simplified failure criterion in Eq. (53). As shown in Fig. 13(b), the failure contours based on
the simplified failure criterion appear to agree better with the experimental results than those based on the
failure criterion in Eq. (50) under combined opening and shear loading conditions.

(1 — 20+ 222)F + (kp, Pe)* = 1 (53)

6. Conclusions

Failure loads of spot welds under combined three resultant forces and three resultant moments are
investigated. In order to obtain a general failure criterion for spot welds in circumferential failure mode for
automotive applications, an approximate limit load analysis is performed. An approximate limit load
solution is obtained with consideration of the effects of sheet thickness, nugget diameter and combination
of loads. Based on the approximate limit load solution, a general failure criterion in a quadratic form for
spot welds under combined loading conditions is proposed in terms of the normalized forces and moments
with consideration of the sheet thickness and the nugget diameter. The general failure criterion includes
three correction factors which can be estimated based on the experimental results of spot welds under
combined loading conditions. The experimental results of failure loads under various combined loading
conditions are compared well with those based on the general failure criterion with these correction factors.
For convenient use of the failure criterion for engineering applications, a simplified general failure criterion
is proposed under combined loading conditions. The results based on the simplified general failure criterion
agree with the experimental results for specimens under combined opening and shear loading conditions. It
appears that the simplified general failure criterion can be a good candidate for further research on de-
termination of spot weld failure under arbitrary combined loading conditions by finite element computa-
tions.
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Appendix A. Local equilibrium for limit load analysis

Fig. 14 shows schematically a two-strip model for the lower half nugget for the limit load analysis. A
Cartesian coordinate system is also shown. The origin of the Cartesian coordinate system is located at the
center of the top circular surface of the lower half nugget. The resultant loads P and M are applied on the
top surface of the lower half nugget as shown. As shown in Fig. 14, strips A and B are parallel to the in-
plane coordinates x and y, respectively. The width of strips A and B equals to the nugget diameter. The
boundary of the strips represents the stress discontinuity lines. Note that the concept of stress discontinuity
lines is widely used in the lower bound limit load analysis of cracked specimens under bending conditions.
In this two-strip model, the lower half nugget is considered as a rigid circular cylinder. The stress ¢’ is
uniformly distributed in the right and left parts of strip A with the rigid lower half nugget excluded. The
stress 0;3 is uniformly distributed in the front and back parts of strip B with the rigid lower half nugget
excluded. As shown in Fig. 14, the two strips and the weld nugget intersect with each other and provide four
independent regions bordered by the nugget circumferential surface and the outer surface of the square box
marked as bold lines as shown. Note that there is no connection between any two neighboring regions.
Therefore, there is no requirement of the stress continuity between any two neighboring regions. When the
stresses o,. and g,. due to each resultant are considered, it becomes difficult to obtain a stress distribution to
satisfy the local equilibrium conditions throughout the domain of the two strips of the two-strip model. We
will discuss this difficulty by examining the local equilibrium conditions.

The local equilibrium conditions with respect to the Cartesian coordinate system can be written as

=0 Al

Ox oy 0z (A1)
do,, 0o, Oo

Tz A2

Ox dy + 0z 0 (A2)

-~ 1

—— ==l =T/

Fig. 14. A two-strip model of the lower half spot weld nugget for the limit load analysis.
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Ox oy 0z

Here, the stresses in Eqgs. (A.1)—(A.3) are average stresses through the thickness. Now we consider the sheet
outside the nugget, the out-of-plane stresses o.., 6., and ¢, should vanish on the sheet surfaces. However,
o and o, are still considered as the average out-of-plane shear stresses through the thickness. Note that o,
is assumed to be zero since the twisting moment M, is not considered in this limit load analysis. The
equilibrium equations are now rewritten as

=0 (A.3)

0o
2 =0 A4
o (A.4)
00,
E =0 (A.5)
00,. 00,
2y _ A.

Ox dy 0 (A-6)

We will consider the stresses due to the five resultant forces and moments, Py, P,, P., M, and M,, one by one.
Denote the stresses with a subscript i as the stresses satisfy the equilibrium equations due to the ith re-
sultant. Therefore, we can write the equilibrium equations for the stresses due to the ith resultant as

% —0 (A7)

a(g;y),- _0 (A.8)

a(g;); +6<g;z>[ —0 (A.9)
Taking the summation of Egs. (A.7)—(A.9) over the range of i from 1 to 5 gives

o %;Gxx); o (A.10)

@(Zé;%)io (A.11)

@(Za;%),- +G(Zaiy%z)i o (A.12)

Egs. (A.10)—(A.12) indicate that when the stresses due to each resultant can be shown to satisfy the
equilibrium equations, the sums of the stresses due to all the resultants should also satisfy the equilibrium
equations.

As discussed in the main text, the stresses o”* and o-;; due to P, and P,, respectively, are assumed to be
uniformly distributed in the two-strip model as shown in Fig. 14. Since these stresses are uniformly dis-
tributed, equilibrium Egs. (A.7) and (A.8) are satisfied. The statement is true when either the Cartesian or
cylindrical coordinate system is used. When the stresses v, o©*, o” due to M,, P,, and P., and the stresses
ok, 0, o o due to M,, P, and P, are considered, we may select (oxz) mdependent of x and (g,,), inde-
pendent of y to satisfy the average out-of-plane stress equilibrium condition in Eq. (A.9). However, it is
difficult to obtain a stress distribution as a function of the in-plane coordinates x and y, and the thickness
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coordinate z to satisfy the local average stress equilibrium condition in Eq. (A.9) and the moment equi-
librium conditions in the x and y directions throughout the domain of the two strips of the two-strip
model. Note that we neglect the flexural effects since we only concentrate on the material element bordering
the nugget circumferential surface due to the observed failure mechanisms in Figs. 1 and 3. However, in
order to satisfy the local average stress equilibrium condition in Eq. (A.9) and the moment equilibrium
conditions, a much more complex stress state with the bending stress must be assumed for the material
element away from the circumferential surface. With the consideration of the bending stress, the normal
stresses such as ¢, and o¢,, can no longer be assumed uniformly distributed through the thickness.
This leads to a plastic collapse conditions on a part of the thickness. Moreover, if we consider the flexural
effects away from the nugget circumferential surface, we should also consider the flexural effects for the
material element bordering the nugget circumferential surface. The distribution of the local moment
along the circumferential surface can be quite complex even under a relatively simple loading condition
such as the pure opening loading condition. But this will also lead to a collapse condition on a part of the
thickness. It seems that to develop a relative simple average stress and moment distribution to satisfy the
local equilibrium conditions including flexural effects is a formidable task. Therefore, we relax the local
equilibrium conditions and concentrate on the material element bordering the nugget circumferential
surface to satisfy the global equilibrium conditions in order to obtain an approximate closed form engi-
neering solution in the same spirit of the analysis of Merkle and Corten (1974). In this way, the engi-
neering solution will provide a basic form for the failure criterion in terms of appropriately normalized
resultants.

In this paper, we only consider the four thin layers bordering the lower half nugget in the four inde-
pendent regions as shown in Fig. 15. Note that Fig. 15 shows a top view of the two-strip model. The shaded
areas represent four independent regions. Dashed lines as shown in the figure represent four thin material
layers bordering the rigid lower half nugget. The approximate limit load analysis is conducted for these four
independent thin layers. Strictly speaking, the lower bound limit load analysis should be conducted with
statically admissible stresses in a finite domain instead of a thin layer with the equilibrium and traction
continuity conditions being satisfied. However, in order to develop a closed form engineering failure cri-
terion of spot welds for easy use, it is only feasible to conduct the approximate limit load analysis for the
four thin material layers bordering the weld nugget due to the complex stress state experienced by spot
welds under combined resultant force and moment conditions.

TR T

L ~—

Fig. 15. A top view of the two-strip model for the lower half spot weld nugget. Four independent regions are marked as four shaded
areas. Dashed lines are shown in the figure to represent actually failure locations in each region.
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Appendix B. Stresses due to twisting moment M, and plastic collapse conditions

Here, the difficulty of considering the twisting moment M, in the approximate limit load analysis is
discussed. We assume that the twisting moment M, is balanced by the shear stress ¢y with respect to the
cylindrical coordinate system. Considering the global equilibrium conditions, ¢’ is written as

M, 2M,
P e R B.1
o 2mrt Dt (B-1)
The other two in-plane stresses ¢ and g} are assume as
g = 0 (BZ)
o, =0 (B.3)
The in-plane equilibrium equations are rewritten with respect to cylindrical coordinate system as
aarr 1 ao—r(') O — 000
- - % B.4
or r 00 r (B.4)
Og,y 10 20,
0y 29000 | 200 _ (B.5)

or r 00 r

Substituting Eq. (B.1)—(B.3) into Egs. (B.4) and (B.5) indicates that the in-plane equilibrium equations are
satisfied. There is no stress discontinuity surface for the stress distribution due to M, for the material el-
ements near the nugget circumferential surface. Alternatively, the stresses for the material element bor-
dering the nugget circumferential surface can be referred to the Cartesian coordinate system as

y 2M,
o't =~ sin20 = 5 (B.6)
. M. .
oh = oy sin 20 = — —3, §in20 (B.7)
2M,
= o cos 20 = — cos 20 (B.8)

DZ
With consideration of the twisting moment M., the stresses o,, and o), in the four thin layers bordering the
lower half nugget due to P, P, and M. as shown in Fig. 15 can be rewritten as

P,

ZM
= o't = n20 B.
Oo =02 + ST + D (B.9)
P, 2M,
Oy =00 +0 5Di ~ 2D sin 20 (B.10)

Now the normalized effective stress 7. in Eq. (45) can be rewritten with consideration of the twisting
moment M, as

PR P PP | . )

T, = 3Px +3P —751gn( Pysign(a )PP, — [sign(a”) P, — sign(a?)]P,M. sin 20 + M

w X »w

2
+ sign(o-)f’;)ochJrPx( ) +2M] [mgn 1)1 — )P, +P <:;> 2]\7[‘} =1 (B.11)

Here, sign(c?), sign(am), sign(a7%) and sign(a7%) still represent the signs of corresponding stresses in each
of the four regions as shown in Fig. 9. For a given monotonically increasing loading conditions when
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the moment M., is zero, the plastic collapse condition will be satisfied for the material element bordering the
nugget circumferential surface in one, two or four of the four thin layers shown as dashed lines in Fig. 15,
based on Eq. (B.11). For a given monotonically increasing loading conditions when the moment A, is not
zero, the yielding will first be satisfied at a material element bordering the nugget as one, two or four points
in the four thin layers at 8 = n/4, 3n/4, St/4 or 7n/4. However, the initial yielding at a specific point in a
region cannot be considered as a plastic collapse of the region. Therefore, we cannot include the twisting
moment into our limit load analysis. The inclusion of the twisting moment M. is introduced empirically by

including a quadratic term of M f in the engineering failure criterion proposed in the main text based on the
experimental results.
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