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Abstract

The circumferential failure mode of spot welds is investigated under combined loading conditions. Failure mech-

anisms of spot welds under different loading conditions are first examined by the experimental observations and a plane

stress finite element analysis. An approximate limit load analysis for spot welds is then conducted to understand the

failure loads of spot welds under combinations of resultant forces and resultant moments with consideration of the

global equilibrium conditions only. The approximate limit load solution for circumferential failure is expressed in terms

of sheet thickness, nugget diameter and combinations of loads. Failure contours are generated for spot welds under

opening and shear loading conditions. The results indicate that failure contours become smaller when the ratio of the

sheet thickness to the nugget diameter increases. Based on the approximate limit load solution, a general quadratic

failure criterion for spot welds under combined three resultant forces and three resultant moments is proposed with

correction factors determined by fitting to the experimental results of spot welds under combined loading conditions.

The failure criterion can be used to characterize the failure loads of spot welds with consideration of the effects of sheet

thickness, nugget diameter and combinations of loads. Experimental spot weld failure loads under combined opening

and shear loading conditions and those under combined shear and twisting loading conditions are shown to be

characterized well by the proposed failure criterion. Finally, a simplified general failure criterion for spot welds under

three resultant forces and three resultant moments is proposed by neglecting the coupling terms of the resultant forces

and moments for convenient use of the failure criterion for engineering applications.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Resistance spot welding is widely used to join sheet metals for automotive components. Accurate spot

weld models are helpful in the structural integrity, durability, and crashworthiness analyses in the early

automotive design stages. Since spot welds in automotive components are subjected to complex service
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loading conditions, various types of specimens have been used to analyze fatigue lives of spot welds, for

example, see Hartmann (1958), Davidson (1983), Radaj (1989), Wang and Ewing (1991), Swellam et al.

(1994), Sheppard and Pan (2001) and Zhang (2001). The strengths of spot welds have also been investigated

by many researchers. For example, Hartmann (1958) discussed the mechanical tests of spot welds in ten-
sion-shear, direct tension, torsion and peel specimens. VandenBossche (1977) adopted a plasticity approach

to examine the strength of spot welds in lap-shear specimens. Sawhill and Furr (1981) and Ewing et al.

(1982) investigated the strength of spot welds in terms of the specimen geometry, welding parameter,

welding schedule, base metal strength, testing speed and testing configuration. Zuniga and Sheppard (1997)

examined the failure modes of spot welds in coach-peel and lap-shear specimens. Lee et al. (1998) adopted a

nominal stress approach to model their experimental results on the strength of spot welds in U shaped

specimens under combined tension and shear loading conditions. Wung (2001a) and Wung et al. (2001)

proposed a failure criterion based on their experimental results of spot welds in various types of specimens.
Lin et al. (2001, 2002b) investigated the failure mechanisms of spot welds in mild and HSLA steel square-

cup specimens by examining the fractographs of spot welds under combined opening and shear loading

conditions. Lin et al. (2002a, 2003) obtained an approximate limit load solution for spot welds under

combined opening and shear loading conditions and developed a failure criterion for spot welds in mild

steel specimens under static and impact combined loading conditions based on their experimental results.

The experimental observations in Lin et al. (2001, 2002b) show that failure occurs along the circum-

ference of the weld nuggets of spot welds in mild steel specimens. Fig. 1 shows the side views of failed 1.5

mm thickness specimens of mild steel under pure opening and combined opening and shear loading con-
ditions. The arrows in the figure show the loading directions. Circumferential failure can be seen under pure

opening loading conditions (with a loading angle of 0� as defined in Lin et al., 2001, 2002b) in Fig. 1(a).

Circumferential failure with a remaining lip can also be seen under combined opening and shear loading

conditions in Fig. 1(b). However, when the weld process is questionable or the weld has a weaker strength

than the base metal, spot welds may have the interfacial failure mode (through nugget failure) as discussed

in Thornton et al. (1996), Chao et al. (1998) and Peterson and Borchelt (2000).

Fig. 2 shows schematically two metal sheets jointed by a spot weld. Note that the spot weld is idealized as

a circular cylinder as shown in Fig. 2. These two sheets could be different materials with different thicknesses.
As schematically shown in Fig. 2(a), the surface tractions Tu and T l are applied on the lateral sides of the

upper and lower metal sheets, respectively. When the surface tractions increase, the spot welds may fail by

different failure modes. Three possible different failure modes are shown in Fig. 2(b)–2(d) with shaded failure

surfaces. Fig. 2(b) indicates that the failure of spot weld occurs along the circumferential surface of the spot

weld in the lower sheet. Fig. 2(c) indicates that the failure of spot weld occurs along the circumferential

surface of the spot weld in the upper sheet. Fig. 2(d) shows that the spot weld fails along the interfacial
Fig. 1. Side views of 1.5 mm thickness specimens under (a) pure opening loading conditions and (b) combined opening and shear

loading conditions. The arrows indicate the loading directions.



Fig. 2. Two sheets joined by a spot weld may fail under circumferential or interfacial failure modes. (a) Two sheet metals joined by a

spot weld under surface tractions Tu and T l. (b) The spot weld may fail near the circumferential surface shown as the shaded region in

the lower sheet. (c) The spot weld may fail near the circumferential surface shown as the shaded region in the upper sheet. (d) The spot

weld may fail along the interfacial surface shown as the shaded region between the two sheets.
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surface of the spot weld between two metal sheets. The failure of the spot weld is determined by the com-

petition of these three failure modes (two circumferential failure modes and one interfacial failure mode).

The spot weld fails when the load first satisfies one of the failure conditions of these three failure modes as the

load increases. Therefore, the failure conditions need to be investigated for both circumferential and in-

terfacial failure modes. In this paper, we will concentrate on the circumferential failure mode of spot welds.

Since spot welds in structural components often fail under combined loads during vehicle crashes, a
general failure criterion for spot welds under combined loads is helpful for the crashworthiness analysis in

the early automotive design stage. A general failure criterion for spot welds can be implemented into finite

element codes for accurate simulations of the crush of spot welded structural components. In this paper, the

failure mechanisms of spot welds under different loading conditions are first examined. We then try to

investigate the failure loads of spot welds under combined three resultant forces and three resultant mo-

ments for the circumferential failure mode. An approximate limit load analysis is performed to investigate

the effects of combinations of loads, sheet thickness and nugget diameter. Based on the approximate limit

load solution and the experimental results, a general failure criterion is proposed. Finally, a simplified
general failure criterion is proposed for easy use of the failure criterion for engineering applications.
2. Failure mechanisms

2.1. Experimental observations

A comparison of the micrographs shown in Lin et al. (2001, 2002b) suggests that extensive plastic de-
formation occurs near the circumferential surface when spot welds are subjected to loads to failure. The



Fig. 3. (a) A micrograph of the cross-section of a failed spot weld in a 1.5 mm thickness specimen under pure opening loading

conditions. (b) A micrograph of the cross-section of a failed spot weld in a 1.5 mm thickness specimen under combined opening and

shear loading conditions.
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failure mechanisms are asymmetrical when resultant shear forces were applied. Fig. 3(a) shows a micro-

graph of the cross-section of a failed spot weld in a 1.5 mm thickness specimen under opening loading
conditions (Lin et al., 2002b). The arrow in the figure shows the loading direction. The figure shows that the

spot weld appears to fail only by the through thickness shear near the nugget circumferential surface. Fig.

3(b) shows a micrograph of the cross-section of a failed spot weld in a 1.5 mm thickness specimen under

combined opening and shear loading conditions (Lin et al., 2002b). Again, the arrow in the figure shows the

loading direction. The load can be decomposed into an opening component to open the spot weld and a

shear component to shear the spot weld. As shown in the figure, necking due to stretching appears close to

the weld nugget in the left lower leg, as marked by Leg 1. Therefore, it appears that the fracture was

initiated by necking/shear in the right upper leg at point A, as marked in Fig. 3(b). Then the failure
propagated around the circumference of the nugget (marked by B) by necking/shear. Finally, the sheet

metal on the top part of the specimen was torn off and left a lip (marked by C) on the spot weld after the

two parts of the specimen separated. Based on observations from Figs. 1(b) and 3(b), spot welds failed

initially near the right half nugget in the base metal when the resultant shear force induced more tensile

stretching to the right half of the upper sheet near the nugget.
2.2. Plane stress finite element analysis

Lin et al. (2003) conducted a plane stress finite element analysis for a large square sheet with a circular

rigid inclusion at the center to simulate a spot weld under shear loading conditions. In general, micro-

hardness tests of steel spot welds show that the hardness is higher in the weld nugget than that of the base

metal (for example, see Zuniga and Sheppard, 1995). The high hardness value in the weld nugget suggests a

higher yield strength for the weld nugget than that of the base metal. When steel spot welds are subjected to
large loads, large plastic deformation and failure occur outside the weld nugget as shown in Figs. 1 and 3.

Therefore, the nugget is assumed to be a rigid circular inclusion in the plane stress finite element analysis in

Lin et al. (2003). In Lin et al. (2003), the rigid circular inclusion is fixed and a positive displacement in the x
direction is applied along the outer boundary of the sheet. The sheet material is assumed to follow an elastic

perfectly plastic behavior. Fig. 4(a) shows an undeformed mesh of the finite element model near the rigid

circular inclusion. Fig. 4(b) shows the contour of the plastic strain exx from the finite element analysis based

on the deformed mesh. Note that the displacement of the deformed mesh shown in the figure is magnified

by 500% in order to show the deformation of elements clearly. As shown in Fig. 4(b), the tensile plastic
strain exx becomes large only near the right part of the circumferential surface. This suggests that the large



Fig. 4. (a) An undeformed mesh of the finite element model near the rigid circular inclusion. (b) Distribution of the plastic strain exx
near a rigid circular inclusion in a large thin sheet with in-plane displacement applied along the boundary.
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tensile plastic strain exx near the right part of the circumferential surface is most likely responsible for the

necking/shear failure of the sheet metal for spot welds under shear dominant loading conditions. In

summary, when spot welds are subjected to dominant in-plane shear loads, extensive tensile plastic de-

formation occurs only near a partial circumferential surface of the weld nugget. In order to develop a
failure criterion for the spot welds under general combined loading conditions, plastic collapse is considered

only on a partial nugget circumferential surface when resultant shear forces or moments are applied.
3. An approximate limit load analysis

Based on the experimental observations and finite element analysis, a limit load approach is adopted for

spot welds under combined loading conditions. For the limit load approach, rigid perfectly plastic material

behavior is first assumed. Note that the limit load approach is commonly used to obtain the maximum load

carrying capacity of structures where plastic deformation is extensive at failure. For example, Merkle and
Corten (1974) conducted a lower bound limit load analysis for the material ahead of the crack tip to es-

timate the J -integral for a compact tension specimen. In their lower bound limit load analysis, they mainly

considered the global equilibrium. However, their approach still gave a good engineering solution which

has been adopted in many subsequent engineering fracture analyses, for example, see Chapter 12 in An-

derson (1995), and Pan (1984, 1986) for limit load analyses of cracked pipes. As for spot weld problems, the

limit load approach conducted by Lin et al. (2002a) with consideration of the global equilibrium appears to

give a good engineering solution to characterize the failure loads of spot welds under combined opening

and shear loading conditions. We will follow the same strategy as the investigations mentioned earlier to
develop an engineering solution under combined loading conditions.

Fig. 5(a) shows schematically two metal sheets joined by a spot weld. As shown in Fig. 5(a), the surface

tractions Tu and T l are applied on the lateral sides of the upper and lower metal sheets, respectively. As

mentioned earlier, we idealize the weld nugget as a circular cylinder as shown in Fig. 5(a). Fig. 5(a) also

shows a Cartesian coordinate system where x and y represent the in-plane coordinates, and z represents the
out-of-plane coordinate. The origin of the Cartesian coordinate system is located at the center of the in-

terfacial circular cross-section of the weld nugget between the two sheets as shown. Note that the directions

of the x and y axes of the Cartesian coordinate system must coincide with the directions of the nominal
principal bending moments of the sheet near the weld nugget to avoid the consideration of the twisting



Fig. 5. (a) Two sheet metals are joined by a spot weld under the surface tractions Tu and T l. The surface tractions and a Cartesian

coordinate system are shown. (b) The lower sheet with the lower half nugget is shown under the surface tractions T l and Tw. (c) The

surface traction Tw on the top surface of the lower half nugget is represented by a resultant force P and a resultant moment M. (d) The

lower half nugget is considered solely with the surface traction Tc on the nugget circumferential surface to balance the resultant loads.
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component of the nominal moments. For this limit load analysis, we only consider the lower half of weld
nugget in the thinner sheet as shown in Fig. 5(b) without loss of generality. Fig. 5(b) shows that the surface

traction Tw is on the top surface of the lower half nugget in the thinner sheet. Fig. 5(c) shows that the

surface traction Tw can also be expressed as a resultant force P and a resultant moment M at the center of

the interfacial nugget surface. If only the lower half nugget is considered, the resultant loads P and M
should be balanced by the surface traction Tc along the nugget circumferential surface in a free body

diagram for the lower half nugget as shown in Fig. 5(d).

Note that in order to develop a limit load solution, the equilibrium conditions need to be satisfied. In the

main text, we only conducted an approximate limit load analysis with consideration of the global equi-
librium conditions. The details and the difficulty to find a stress distribution to satisfy the local equilibrium

conditions near the circumferential surface of the lower half nugget are discussed in Appendix A. Here, we

consider the stresses along the nugget circumferential surface but with respect to the Cartesian coordinate

system due to resultant loads P andM . It is helpful to imagine that a rectangular box outside the lower half

nugget as shown in Fig. 6(a) to evaluate the stresses along the nugget circumferential surface with respect to

a Cartesian coordinate system. All the stresses with respect to Cartesian coordinate system along the cir-

cumferential surface of the lower half nugget are used to balance the resultant force and the resultant

moment on the top surface of the lower half nugget. The resultant force and the resultant moment on the
top surface of the lower half nugget are decomposed into three forces Px, Py and Pz and three moments Mx,

My and Mz as shown in Fig. 6(a). The stresses with respect to the Cartesian coordinate system are expressed

schematically in the physical directions to balance the positive resultant forces and resultant moments.

Here, rxx, ryy and rxy represent the average in-plane stresses, and rxz and ryz represent the average out-of-

plane shear stresses on the lateral surfaces. Note that, in this limit load analysis, we only consider the case of

the lower half nugget under three forces, Px, Py and Pz, and two in-plane bending moments, Mx and My . The

difficulty of considering the twisting moment Mz in this limit load analysis will be discussed in Appendix B.

Note that a cylindrical coordinate system as shown in Fig. 6(b) is also adopted to conveniently to integrate
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Fig. 6. The lower half nugget is subjected to the resultant force P and the resultant moment M, which are decomposed into the

components with respect to a Cartesian coordinate system. The resultant loads are balanced by the assumed stresses along the cir-

cumferential surface of the spot welds (a) in the Cartesian coordinate system and (b) in the cylindrical coordinate system.

S.-H. Lin et al. / International Journal of Solids and Structures 40 (2003) 5539–5564 5545
the stresses along the circumferential surface to balance the resultant forces and moments on the top surface

of the lower half nugget in the approximate limit load analysis. The von Mises yield criterion is employed to

develop the approximate limit load solution. The detailed stress states on the circumferential surface of the
weld nugget with respect to both the Cartesian and cylindrical coordinate systems due to each of the force

and moment components are discussed in the following.
3.1. Stresses due to bending moments Mx and My

Fig. 7 shows a side view of the lower half nugget with assumed loads and average stresses. As shown in

Fig. 7(a), an average shear stress rMy
rz acting on the circumferential surface of the nugget is assumed to

balance the moment My . Here, rMy
rz represents the average value of rrz through the thickness due to the

moment My . Note that the physical directions of rMy
rz due to My are shown in Fig. 7(a). Now, we are seeking

a distribution of rMy
rz as a function of h based on the assumption of the uniform shear stress rMy

xz along the



Fig. 7. (a) A side view of the lower half nugget under the moment My , the shear load Px and the assumed stresses, (b) a top view of the

shear stress rPx
xz due to the shear load Px on the lower half nugget.
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nugget circumference. Note that other contributions to the shear stress rrz due to the opening and shear
loads will be discussed later. The shear stress rMy

xz can be referred to the cylindrical coordinate as
rMy
rz ¼ rMy

xz cos h ð1Þ

rMy

hz ¼ �rMy
xz sin h ð2Þ
Here, rMy
rz and rMy

hz represent the shear stress components due to the moment My . Since the moment My is

balanced by the shear stress rMy
rz , the moment balance in the y direction with respect to the lower half nugget

requires
My �
Z 2p

0

rMy
rz ðr cos hÞtrdh ¼ 0 ð3Þ
where r is the nugget radius and t is the sheet thickness. Since rMy
xz is assumed to be a constant, rMy

xz can be

derived as
rMy
xz ¼ My

pr2t
¼ 4My

pD2t
ð4Þ
where D is the nugget diameter. Note that we need to use the cylindrical coordinate system to conveniently

integrate the contribution of the shear stress rMy
xz to the bending moment. Similarly, we can obtain rMx

yz due
to the moment Mx as
rMx
yz ¼ � Mx

pr2t
¼ � 4Mx

pD2t
ð5Þ
3.2. Stresses due to shear loads Px and Py

3.2.1. Normal stresses

We assume that the shear loads Px and Py are balanced by the average normal stresses rxx and ryy . We

now discuss the stress due to the shear load Px first. Fig. 7(a) shows the side view of the weld nugget

subjected to a shear load Px and the corresponding stress rxx. The physical directions of rxx on the two sides

of the nugget are shown in Fig. 7(a). The stress rxx due to shear load Px is positive for the left part and

negative for the right part of the lower half nugget as show in Fig. 7(a). One can consider that the assumed
stress state comes from the fact that the shear load Px on the surface of the lower half nugget pulls the left

part of the adjacent material and pushes the right part of the adjacent material. The assumption of the
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stress state is physical by referring to the deformed mesh as shown in Fig. 4(b). Note that the deformed

mesh as shown in Fig. 4(b) can be related to the deformation mode of a spot weld under a negative resultant

force Px applied on the top surface of the lower half nugget. We here assume that the stresses rrr, rhh and rrh

of the material element are derived from the stress state where rxx is uniform and rxy ¼ 0 for the in-plane
stresses for the left and right half of the nugget surface due to the shear load Px. The average stress rxx

through the thickness is assumed to act along the mid-plane of the lower half nugget. The normal stress rxx

can be written as
rxx ¼ � Px
2Dt

ð6Þ
In Eq. (6), ‘‘)’’ is for the right half of the lower nugget and ‘‘+’’ is for the left half of the lower nugget.

The stresses on the circumferential surface can now be referred to the cylindrical coordinate system as
rPx
rr ¼ rxx cos

2 h ð7Þ

rPx
rh ¼ �rxx sin h cos h ð8Þ

rPx
hh ¼ rxx sin

2 h ð9Þ

Similarly, the stress ryy due to the shear load Py can be written as
ryy ¼ � Py
2Dt

ð10Þ
Note that the stress ryy due to the shear load Py is positive for the front part and negative for the back part

of the lower half nugget as defined in Fig. 6(a). The stresses on the circumferential surface can also be

referred to the cylindrical coordinate system as
rPy
rr ¼ ryy sin

2 h ð11Þ

rPy
rh ¼ ryy sin h cos h ð12Þ

rPy
hh ¼ ryy cos

2 h ð13Þ

Note that the sign of rxx is different for the right and the left part of the lower nugget and the sign of ryy is
different for the front and back part of the lower nugget. Therefore, there are four stress states for rxx and

ryy for the regions of h ¼ 0 to p=2, p=2 to p, p to 3p=2, and 3p=2 to 2p along the circumferential surface.
3.2.2. Shear stresses

As shown in Fig. 7(a), an average shear stress rPx
rz acting on the circumferential surface of lower half

nugget is needed to balance the moment due to the shear load Px and the average stress rxx. Here, rPx
rz

represents the average value of rrz through the thickness due to Px. Now, we are seeking a distribution of rPx
rz

as a function of h. First, we consider a distribution of rPx
xz to represent the shear load Px acting on the top

surface of the lower half nugget as shown in Fig. 7(b). The shear stress due to Px can be referred to the

cylindrical coordinate system as
rPx
rz ¼ rPx

xz cos h ð14Þ

rPx
hz ¼ �rPx

xz sin h ð15Þ
Here, rPx
rz and rPx

hz represent the components of the shear stress due to the shear load Px. Note that another
contribution to the shear stress rrz due to the opening load Pz will be discussed later. The moment balance in

the y direction with respect to the lower half nugget requires
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Z 2p

0

rPx
rz ðr cos hÞtrdh� Px �

t
2
¼ 0 ð16Þ
When rPx
xz is assumed to be a constant, rPx

xz can be derived as
rPx
xz ¼

Px
2pr2

¼ 2Px
pD2

ð17Þ
Similarly, the shear stress rPy
yz due to the shear load Py can be written as
rPy
yz ¼

Py
2pr2

¼ 2Py
pD2

ð18Þ
The shear stresses due to Px and Py can be referred to the cylindrical coordinate system as
rrz ¼ rPx
xz cos hþ rPy

yz sin h ð19Þ

rhz ¼ �rPx
xz sin hþ rPy

xz cos h ð20Þ
3.3. Stresses due to opening load Pz

Fig. 8(a) shows the lower half nugget under the opening load Pz on the interfacial surface and shear

forces Pxz;right, Pxz;left, Pyz;back and Pyz;front on the circumference surface. The opening load Pz is balanced by

shear forces Pxz;right, Pxz;left, Pyz;back and Pyz;front. The equilibrium requires
Pz ¼ Pxz;right þ Pxz;left þ Pyz;back þ Pyz;front ð21Þ

Here, we define Pxz ¼ Pxz;right þ Pxz;left and Pyz ¼ Pyz;back þ Pyz;front. Now, we define a distribution parameter a
for spot welds under different opening loading conditions as
a ¼ Pxz
Pz

ð22Þ
When we assume a spot weld as a spring with a point property in a finite element analysis, the transverse

shear forces from the finite element analysis for the elements neighboring the spot welds can be obtained to
determine a. For example, a ¼ 1 for spot welds under uniaxial opening loading conditions as in U shaped

specimens used in Lee et al. (1998) and a ¼ 0:5 for spot welds under equal biaxial opening loading con-

ditions as in square-cup specimens used in Lin et al. (2001). With the distribution parameter a, we can write
Pxz ¼ aPz ð23Þ

and
Pyz ¼ ð1� aÞPz ð24Þ

In order to account for more general opening loading conditions, we introduce two more distribution

parameters as
cx ¼
Pxz;right
Pxz

ð25aÞ
and
cy ¼
Pyz;back
Pyz

ð25bÞ
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Note that the two more distribution parameters are used to account for the different distributions of the

shear forces Pxz and Pyz on the nugget circumferential surface. With the distribution parameters cx and cy , we
can write
Pxz;right ¼ cxPxz ð26Þ

Pxz;left ¼ ð1� cxÞPxz ð27Þ

Pyz;back ¼ cyPyz ð28Þ

Pyz;front ¼ ð1� cyÞPyz ð29Þ
The values of distribution parameters cx and cy are between 0 and 1 based on the distributions of the

opening load. For example, cx and cy are equal to 0.5 when the entire circumferential surface of the lower

half nugget carries the load uniformly. If we assume that shear stresses rxz;right, rxz;left, ryz;back and ryz;front,

corresponding to Pxz;right, Pxz;left, Pyz;back and Pyz;front, are uniformly distributed along the nugget circumfer-

ential surface. The average shear stresses rxz;right, rxz;left, ryz;back and ryz;front can be written as
rPxz;right
xz ¼ � Pxz;right

Dt
¼ � cxPxz

Dt
¼ � cxaPz

Dt
ð30Þ
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rPxz;left
xz ¼ Pxz;left

Dt
¼ ð1� cxÞPxz

Dt
¼ ð1� cxÞaPz

Dt
ð31Þ

rPyz;back
yz ¼ � Pyz;back

Dt
¼ �

cyPyz
Dt

¼ �
cyð1� aÞPz

Dt
ð32Þ

rPyz;front
yz ¼ Pyz;front

Dt
¼

ð1� cyÞPyz
Dt

¼
ð1� cyÞð1� aÞPz

Dt
ð33Þ
Note that the stresses r
Pxz;right
xz and r

Pyz;back
yz are negative, and the stresses r

Pxz;left
xz and r

Pyz;front
yz are positive when a

positive opening load Pz is applied on the lower half nugget. When the distribution parameters cx and cy are
not equal to 0.5, shear stresses rmy

xz and rmx
yz along the circumferential surface are needed to balance the mo-

ments my and mx, which are generated by the uneven shear forces Pxz;right, Pxz;left, Pyz;back and Pyz;front. We now
discuss the stresses due to the momentmy first. As shown in Fig. 8(b), an average shear stress rmy

rz acting on the

circumferential surface of the nugget is needed to balance the momentmy generated by the shear forces Pxz;right
and Pxz;left. Here, rmy

rz represents the average value of rrz through the thickness due tomy . As shown in Fig. 8(b),

r
Pxz;right
rz and r

Pxz;left
rz represent the average values of rrz through thickness due to Pxz;right and Pxz;left, respectively.

Now, we are seeking a distribution of rl
rz as a function of h. Note that the superscript l of shear stress rl

rz

represents the balancing moment my or uneven shear forces Pxz;right and Pxz;left. The shear stress can be

referred to the cylindrical coordinate system as
rl
rz ¼ rl

xz cos h ð34Þ

rl
hz ¼ �rl

xz sin h ð35Þ
Here, rl
rz and rl

hz represent the components of the shear stress due to the balancing moment my or uneven

shear forces Pxz;right and Pxz;left. The equilibrium in the y direction requires
Z p=2

�p=2
rPxz;right
rz ðr cos hÞtrdhþ

Z 3p=2

p=2
rPxz;left
rz ðr cos hÞtrdhþ

Z 2p

0

rmy
rz ðr cos hÞtrdh ¼ 0 ð36Þ
When rmy
xz is assumed to be a constant, rmy

xz can be derived as
rmy
xz ¼ Pxz

4rt
ð2cx � 1Þ ¼ aPz

2Dt
ð2cx � 1Þ ð37Þ
Similarly, we can obtain rmx
yz as
rmx
yz ¼ Pyz

4rt
ð2cy � 1Þ ¼ ð1� aÞPz

2Dt
ð2cy � 1Þ ð38Þ
Based on the stress analyses, the total shear stresses rxz and ryz can be written as
rxz ¼ rPz
xz þ rmy

xz þ rPx
xz þ rMy

xz ¼ � aPz
2Dt

þ 2Px
pD2

þ 4My

pD2t
ð39Þ

ryz ¼ rPz
yz þ rmx

yz þ rPy
yz þ rMx

yz ¼ �ð1� aÞPz
2Dt

þ 2Py
pD2

� 4Mx

pD2t
ð40Þ
In Eq. (39), ‘‘)’’ is for the right part and ‘‘+’’ is for the left part. In Eq. (40), ‘‘)’’ is for the back part and

‘‘+’’ is for the front part. Note that the stress rxz is different for the right and the left part of the nugget and

the stress ryz is different for the front and back part of the nugget. Note that cx and cy do not appear in Eqs.
(39) and (40), respectively. Therefore, there are four stress states for rxz and ryz for the regions of h ¼ 0 to

p=2, p=2 to p, p to 3p=2, and 3p=2 to 2p along the circumferential surface.
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3.4. Approximate limit load solution

Based on the previous sections, the stress states in the Cartesian coordinate system along the circum-

ferential surface of the nugget are obtained. Note that rxx and ryy are expressed in Eqs. (6) and (10), and rxz

and ryz are expressed in Eqs. (39) and (40). As discussed earlier, the directions of the x and y axes of the

Cartesian coordinate system are selected to coincide with those of the nominal principal bending moments

of the sheet near the weld nugget to avoid the consideration of the twisting component of the nominal

moments. Also, the twisting momentMz is not considered in the approximate limit load analysis. Therefore,

rxy is considered to be zero. Note that the difficulty of considering the twisting moment Mz in the ap-

proximate limit load analysis will be discussed in Appendix B. With the assumption of rzz ¼ 0, the von

Mises yield criterion can now be expressed as
r2
xx � rxxryy þ r2

yy þ 3r2
xz þ 3r2

yz ¼ 3s20 ð41Þ
where s0 is the shear yield stress.

Here, we define the effective shear stress se as
s2e ¼
1

3
r2
xx �

1

3
rxxryy þ

1

3
r2
yy þ r2

xz þ r2
yz ð42Þ
We can also define the normalized loads and moments as
ePPi ¼
Pi

2Dts0
ð43Þ

eMMj ¼
Mj

2Dts0

4

pD
ð44Þ
where the subscript i represents x, y or z and the subscript j represents x and y. The normalized effective

stress ~sse satisfying the yield criterion can be rewritten as
~ss2e ¼
1

3
ePP 2
x þ 1

3
ePP 2
y � 1

3
signðrPx

xxÞsignðrPy
yy ÞePPx

ePPy þ signðrPz
xzÞaePPz

�
þ ePPx

4t
pD

� �
þ 2 eMMy

�2
þ signðrPz

yzÞð1
�

� aÞePPz þ ePPy
4t
pD

� �
� 2 eMMx

�2
¼ 1 ð45Þ
Here, signðrPx
xxÞ, signðr

Py
yy Þ, signðrPz

xzÞ and signðrPz
yzÞ represent the signs of corresponding stresses in each of the

four regions. On the right hand side of Eq. (45), the first three terms related to rxx and ryy are due to Px and
Py . The last two terms related to rxz and ryz are due to Pz, Px, Py , Mx and My . As shown in Fig. 9, we define

region I for h ¼ 0 to p=2, region II for h ¼ p=2 to p, region III for h ¼ p to 3p=2, and region IV for

h ¼ 3p=2 to 2p. The values of the four sign functions for the four regions are shown in Fig. 9. For a given

monotonically increasing loading condition, when the stress state in one of regions satisfies the yield cri-

terion ð~sse ¼ 1Þ, the plastic collapse or failure is assumed to take place in the region. The details of plastic

collapse condition are discussed in Appendix B. Note that, a ¼ 1 for uniaxial opening loading conditions

and a ¼ 1=2 for equal biaxial opening loading conditions.

3.5. Special cases

Here we consider the case of combined opening load Pz and shear load Px. Eq. (45) becomes
~ss2e ¼
1

3
ePP 2
x þ signðrPx

xz ÞaePPz

�
þ ePPx

4t
pD

� ��2
þ ½ð1� aÞePPz�2 ¼ 1 ð46Þ
For the case that both Pz and Px are positive, the left half of the circumferential surface (regions II and III) with

signðrPz
xzÞ ¼ 1 will first satisfy the yield criterion. Fig. 10 shows the approximate limit load solutions under



Fig. 9. The signs of the stresses in each of four regions in the yield criterion.
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both equal biaxial ða ¼ 0:5Þ and uniaxial ða ¼ 1Þ opening loading conditions for spot welds with the ratios of

t=D ¼ 0, 0.1 and 0.2. Note that t=D ¼ 0 represents the case that the thickness dependence is not presented in

the yield criterion. As shown in Fig. 10, the normalized limit load P z for spot welds under equal biaxial
opening loading conditions is higher than that under uniaxial opening loading conditions for a given Px. Fig.

10 also shows that for a given Px, the normalized limit load Pz decreases when the ratio of t=D increases under

both loading conditions. Note that, when we consider the case of pure opening modes ðPx ¼ 0Þ, the ratio of

the limit load under biaxial opening loading conditions to that under uniaxial opening loading conditions isffiffiffi
2

p
according to Eq. (46). This means that spot welds under biaxial opening loading conditions can carry 41%

more loads than those under uniaxial opening loading conditions as shown in Fig. 10.
4. A general failure criterion

In order to develop a general failure criterion for spot welds under combined loading conditions, the

limit loads in the yield criterion of Eq. (45) are modified to fit the experimental failure loads under com-
bined loading conditions. First, the failure loads from combined load experiments are normalized as
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Fig. 10. The yield contours in terms of Pz and Px for spot welds under combined loading conditions with various ratios of t=D. Here,

both biaxial and uniaxial opening loads with a ¼ 0:5 and 1, respectively, are considered.
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P i ¼
Pi

Pmax

ð47Þ

Mi ¼
Mi

Pmax

4

pD
ð48Þ
where the subscript i represents x, y or z and Pmax represents the failure load of spot welds under pure

uniaxial opening loading conditions. Based on the experimental results and the approximate limit load

solution in Eq. (45), a general failure criterion is proposed as
1

3
ðkPxy P xÞ2 þ

1

3
ðkPxy P yÞ2 �

1

3
signðrPx

xxÞsignðrPy
yy Þk2Pxy P xP y þ ðkMzMzÞ2

þ signðrPz
xzÞaPz

�
þ kPxy P x

4t
pD

� �
þ 2kMxyMy

�2
þ signðrPz

yzÞð1
�

� aÞP z þ kPxy P y
4t
pD

� �
� 2kMxyMx

�2
¼ 1

ð49Þ
Here, the contribution of the twisting moment is accounted for by assuming a quadratic term of M
2

z to fit

the experimental results. In Eq. (49), we include only three correction factors, kPxy , kMz and kMxy , to fit the

experimental results based on the assumption of material in-plane isotropy within the x–y plane.

In order to demonstrate the applicability of the general failure criterion for mild steel spot welds, we first

consider the case of spot welds under combined opening and shear loads. For the case that both Px and Pz
are positive, the left half of the circumferential surface (regions II and III) with signðrPz

xzÞ ¼ 1 will first satisfy

the yield condition. For this case, Eq. (49) is reduced to
1

3
ðkPxy P xÞ2 þ aPz

�
þ kPxy P x

4t
pD

� ��2
þ ½ð1� aÞP z�2 ¼ 1 ð50Þ
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Based on the experimental results for U shaped specimens ða ¼ 1Þ presented in Lee et al. (1998) and those

for square-cup specimens ða ¼ 0:5Þ presented in Lin et al. (2002a), kPxy can be estimated as 1.11 for these

mild steel specimens. Fig. 11 shows the results based on the failure criterion in Eq. (50) and the results of
Fig. 11. (a) The normalized failure loads for spot weld with two different nugget sizes in U shaped specimens under combined opening

and shear loads. Various symbols represent the experimental results and two different lines represent the results based on the failure

criterion in Eq. (50). (b) The normalized failure loads for spot welds in square-cup specimens with two different thicknesses under

combined opening and shear loads. Various symbols represent the experimental results and two different lines represent the results

based on the failure criterion in Eq. (50).
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experiments for spot welds under combined opening and shear loading conditions. Fig. 11(a) shows the

normalized failure loads as various symbols for mild steel spot welds in U shaped specimens under com-

bined opening and shear loads (Lee et al., 1998). A picture of the U shaped specimen is also shown as an

insert in the figure. These experimental data were obtained from two different nugget diameters (D ¼ 4:3
and 6.4 mm) and one sheet thickness (t ¼ 0:89 mm). Note that the U shaped specimens are subjected to

uniaxial opening loading conditions and therefore a ¼ 1. The experimental results are normalized by the

maximum load of U shaped specimens under pure opening loading conditions. In the figure, the solid and

dotted lines represent the results based on the failure criterion in Eq. (50). The failure contours appear to

agree well with the experimental results. As shown in Fig. 11(a), when the ratio t=D increases, the failure

contours based on both the experiments and the failure criterion in Eq. (50) become smaller.

Fig. 11(b) shows the normalized failure loads as various symbols for mild steel spot welds in square-cup

specimens under combined opening and shear loads (Lin et al., 2002a). A picture of the square-cup
specimen is also shown as an insert in the figure. These experimental data were obtained from one nugget

diameter (D ¼ 6:4 mm) and two different sheet thicknesses (t ¼ 1 and 1.5 mm). Note that the specimens are

subjected to equal biaxial opening loading conditions and therefore a ¼ 0:5. The experimental results

should be normalized by the maximum load of U shaped specimens under pure uniaxial opening loading

conditions. However, the maximum load for U shaped specimens for this mild steel is not available. The

maximum load for U shaped specimens is therefore estimated from the maximum loads for the cup

specimens divided by
ffiffiffi
2

p
. In the figure, the solid and dotted lines represent the results based on the failure

criterion in Eq. (50). The failure contours appear to agree with the experimental results with slight un-
derestimation. As shown in Fig. 11(b), when the ratio t=D increases, the failure contours based on both the

experiments and the failure criterion in Eq. (50) become smaller. As shown in Fig. 10(a) and 10(b), the

normalized limit load P z shown in Fig. 11(a) is lower for spot welds in U shaped specimens under uniaxial

opening loading conditions than that in square-cup specimens shown in Fig. 11(b) under equal biaxial

opening loading conditions for a given Px. The results based on the experiments and the failure criterion in

Eq. (50) shown in Fig. 10(a) and 10(b) demonstrate the need of a in the failure criterion in Eq. (50).

Finally, we examine the case of spot welds under combined twisting moment Mz, and shear load Px. Eq.
(49) is reduced to
1

3

"
þ 4t

pD

� �2
#
ðkPxy P xÞ2 þ ðkMzMzÞ2 ¼ 1 ð51Þ
Note that the effect of bending due to the shear load Px is accounted for by the term containing 4t=pD in Eq.

(51). The factor kPxy is estimated to be 1.11 based on the experimental results under combined opening and

shear loading conditions. By comparing the experimental results, the effect of the twisting moment Mz is

accounted for by a quadratic term of ðkMzMzÞ2 in Eq. (51). Experimental results under combined twisting

and shear loading conditions are available fromWung (2001b) using asymmetric lap-shear specimens where

the weld nuggets are not located along the load application lines or the symmetric lines of the specimens.

Fig. 12 shows the normalized experimental results as symbols and the results based on the failure criterion
in Eq. (51) as a solid line for mild steel spot welds under combined twisting and shear loading conditions

(Wung, 2001b). A picture of the asymmetric lap-shear specimen is also shown as an insert in the figure.

These experimental data were obtained from one nugget diameter (D ¼ 6:7 mm) and one sheet thickness

(t ¼ 0:91 mm). The failure contour appears to agree well with the experimental results. Note that the

twisting moment Mz and the shear load Px are normalized by the maximum load under pure uniaxial

opening loading conditions. The maximum load under pure uniaxial opening loading conditions is esti-

mated by Eq. (51) and the experimental maximum load for symmetric or regular lap-shear specimens where

the twisting moment Mz is zero at the nugget. According to the normalized experimental results shown in
Fig. 12, the factor kMz can be estimated as 1.08. When the testing results for spot welds in other types of



Fig. 12. The normalized failure loads for specimens under combined twisting and shear loading conditions. The symbols represent the

experimental results and the solid line represents the results based on the failure criterion in Eq. (51).
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specimens are available, we can determine the third correction factor kMxy . The correction factors in general

depend upon the weld nugget size, sheet thickness, sheet material and welding process.
5. A simplified general failure criterion for spot welds

The failure loads of spot welds under combined loading conditions can be obtained by the general failure

criterion based on Eq. (49). However, before we adopt this failure criterion, we need to determine the

directions of the principal bending moments for the base metal sheet near the spot weld of interest. Note

that our Cartesian coordinate system should be fixed to the directions of the principal bending moments to
avoid the consideration of the moment Mxy . When the load distribution near the spot weld becomes

complex, the distribution parameter a needs to be estimated. However, this procedure may not be con-

venient for implementation of the general failure criterion into finite element codes since the components or

vehicles needed to be analyzed may contain hundreds or thousands of spot welds. In order to develop a

failure criterion for spot welds for easy use, we propose a simplified general failure criterion for spot welds

by neglecting the coupling terms of the resultant forces and moments as
½1� 2aþ 2a2�P 2

z þ k2Pxy
1

3

"
þ 4t

pD

� �2
#
ðP 2

x þ P
2

yÞ þ k2Mz
M

2

z þ 4k2Mxy
ðM2

x þM
2

yÞ ¼ 1 ð52Þ
where a depends upon the local transverse shear force ratio as in Eqs. (23) and (24) near the spot weld. Note

again the forces and moments are still normalized by the pure uniaxial opening failure loads. On the left

hand side of Eq. (52), the first term represents the contribution from the out-of-plane opening force, the

second term represents the contribution from in-plane shear force, the third term represents the contri-
bution from the twisting moment with respect to the out-of-plane coordinate z, and the fourth term rep-



S.-H. Lin et al. / International Journal of Solids and Structures 40 (2003) 5539–5564 5557
resents the contribution from the in-plane bending moment. These three correction factors kPxy , kMz and kMxy

are determined from the experimental results under combined loading conditions.
Fig. 13. (a) The normalized failure loads for spot weld with two different nugget sizes in U shaped specimens under combined opening

and shear loads. Various symbols represent the experimental results and different lines represent the results based on the failure cri-

terion in Eq. (50) and the simplified failure criterion in Eq. (53). (b) The normalized failure loads for spot welds in square-cup

specimens with two different thicknesses under combined opening and shear loads. Various symbols represent the experimental results

and different lines represent the results based on the failure criterion in Eq. (50) and the simplified failure criterion in Eq. (53).
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In order to understand the difference between the simplified general failure criterion in Eq. (52) and the

failure criterion in Eq. (49), the experimental results for spot welds under combined opening and shear

loading conditions are used to compare the results based on the both failure criteria. For this loading

condition, Eq. (52) is reduced to
½1� 2aþ 2a2�P 2

z þ
1

3

"
þ 4t

pD

� �2
#
ðkPxy P xÞ2 ¼ 1 ð53Þ
Based on the experimental results for U shaped specimens ða ¼ 1Þ presented in Lee et al. (1998) and those

for square-cup specimens ða ¼ 0:5Þ in Lin et al. (2002a), kPxy can now be estimated as 1.25. Fig. 13 shows the

results based on the failure criterion in Eq. (50) and the simplified failure criterion in Eq. (53), and the

experimental results under combined opening and shear loading conditions. Fig. 13(a) shows the nor-

malized failure loads as various symbols for mild steel spot welds in U shaped specimens under combined

opening and shear loads (Lee et al., 1998). A picture of the U shaped specimen is also shown as an insert in
the figure. Note that the U shaped specimens are subjected to uniaxial opening loading conditions and

therefore a ¼ 1. In the figure, the solid and dotted lines represent the results based on the failure criterion in

Eq. (50) and the dashed-doted and dashed lines represent the results based on the simplified failure criterion

in Eq. (53). The failure contours based on the failure criterion in Eq. (50) appear to agree with the ex-

perimental results. The failure contours based on the simplified failure criterion in Eq. (53) are slightly

larger than those based on the failure criterion in Eq. (50) under combined opening and shear loading

conditions. Fig. 13(b) shows the normalized failure loads as various symbols for mild steel spot welds in

square-cup specimens under combined opening and shear loads (Lin et al., 2002a). A picture of the square-
cup specimen is also shown as an insert in the figure. Note that the specimens are subjected to equal biaxial

opening loading conditions and therefore a ¼ 0:5. In the figure, the solid and dotted lines represent the

results based on the failure criterion in Eq. (50) and the dashed-doted and dashed lines represent the results

based on the simplified failure criterion in Eq. (53). As shown in Fig. 13(b), the failure contours based on

the simplified failure criterion appear to agree better with the experimental results than those based on the

failure criterion in Eq. (50) under combined opening and shear loading conditions.
6. Conclusions

Failure loads of spot welds under combined three resultant forces and three resultant moments are

investigated. In order to obtain a general failure criterion for spot welds in circumferential failure mode for

automotive applications, an approximate limit load analysis is performed. An approximate limit load

solution is obtained with consideration of the effects of sheet thickness, nugget diameter and combination

of loads. Based on the approximate limit load solution, a general failure criterion in a quadratic form for

spot welds under combined loading conditions is proposed in terms of the normalized forces and moments

with consideration of the sheet thickness and the nugget diameter. The general failure criterion includes
three correction factors which can be estimated based on the experimental results of spot welds under

combined loading conditions. The experimental results of failure loads under various combined loading

conditions are compared well with those based on the general failure criterion with these correction factors.

For convenient use of the failure criterion for engineering applications, a simplified general failure criterion

is proposed under combined loading conditions. The results based on the simplified general failure criterion

agree with the experimental results for specimens under combined opening and shear loading conditions. It

appears that the simplified general failure criterion can be a good candidate for further research on de-

termination of spot weld failure under arbitrary combined loading conditions by finite element computa-
tions.
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Appendix A. Local equilibrium for limit load analysis

Fig. 14 shows schematically a two-strip model for the lower half nugget for the limit load analysis. A

Cartesian coordinate system is also shown. The origin of the Cartesian coordinate system is located at the

center of the top circular surface of the lower half nugget. The resultant loads P and M are applied on the

top surface of the lower half nugget as shown. As shown in Fig. 14, strips A and B are parallel to the in-

plane coordinates x and y, respectively. The width of strips A and B equals to the nugget diameter. The

boundary of the strips represents the stress discontinuity lines. Note that the concept of stress discontinuity

lines is widely used in the lower bound limit load analysis of cracked specimens under bending conditions.

In this two-strip model, the lower half nugget is considered as a rigid circular cylinder. The stress rPx
xx is

uniformly distributed in the right and left parts of strip A with the rigid lower half nugget excluded. The

stress rPy
yy is uniformly distributed in the front and back parts of strip B with the rigid lower half nugget

excluded. As shown in Fig. 14, the two strips and the weld nugget intersect with each other and provide four

independent regions bordered by the nugget circumferential surface and the outer surface of the square box

marked as bold lines as shown. Note that there is no connection between any two neighboring regions.

Therefore, there is no requirement of the stress continuity between any two neighboring regions. When the

stresses rxz and ryz due to each resultant are considered, it becomes difficult to obtain a stress distribution to

satisfy the local equilibrium conditions throughout the domain of the two strips of the two-strip model. We
will discuss this difficulty by examining the local equilibrium conditions.

The local equilibrium conditions with respect to the Cartesian coordinate system can be written as
orxx

ox
þ oryx

oy
þ orzx

oz
¼ 0 ðA:1Þ

orxy

ox
þ oryy

oy
þ orzy

oz
¼ 0 ðA:2Þ
zz y

x
Lower Nugget

P

M

A

B

Fig. 14. A two-strip model of the lower half spot weld nugget for the limit load analysis.
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orxz

ox
þ oryz

oy
þ orzz

oz
¼ 0 ðA:3Þ
Here, the stresses in Eqs. (A.1)–(A.3) are average stresses through the thickness. Now we consider the sheet

outside the nugget, the out-of-plane stresses rzz, rzx and rzy should vanish on the sheet surfaces. However,

rzx and rzy are still considered as the average out-of-plane shear stresses through the thickness. Note that rxy

is assumed to be zero since the twisting moment Mz is not considered in this limit load analysis. The

equilibrium equations are now rewritten as
orxx

ox
¼ 0 ðA:4Þ

oryy

oy
¼ 0 ðA:5Þ

orxz

ox
þ oryz

oy
¼ 0 ðA:6Þ
We will consider the stresses due to the five resultant forces and moments, Px, Py , Pz, Mx and My , one by one.

Denote the stresses with a subscript i as the stresses satisfy the equilibrium equations due to the ith re-

sultant. Therefore, we can write the equilibrium equations for the stresses due to the ith resultant as
oðrxxÞi
ox

¼ 0 ðA:7Þ

oðryyÞi
oy

¼ 0 ðA:8Þ

oðrxzÞi
ox

þ oðryzÞi
oy

¼ 0 ðA:9Þ
Taking the summation of Eqs. (A.7)–(A.9) over the range of i from 1 to 5 gives
o
P

i rxx

� �
i

ox
¼ 0 ðA:10Þ

o
P

i ryy

� �
i

oy
¼ 0 ðA:11Þ

o
P

i rxz

� �
i

ox
þ
o

P
i ryz

� �
i

oy
¼ 0 ðA:12Þ
Eqs. (A.10)–(A.12) indicate that when the stresses due to each resultant can be shown to satisfy the

equilibrium equations, the sums of the stresses due to all the resultants should also satisfy the equilibrium

equations.

As discussed in the main text, the stresses rPx
xx and rPy

yy due to Px and Py , respectively, are assumed to be

uniformly distributed in the two-strip model as shown in Fig. 14. Since these stresses are uniformly dis-

tributed, equilibrium Eqs. (A.7) and (A.8) are satisfied. The statement is true when either the Cartesian or

cylindrical coordinate system is used. When the stresses rMy
xz , rPx

xz , r
Pz
xz due to My , Px, and Pz, and the stresses

rMx
yz , r

Py
yz , rPz

yz due to Mx, Py and Pz are considered, we may select ðrxzÞi independent of x and ðryzÞi inde-
pendent of y to satisfy the average out-of-plane stress equilibrium condition in Eq. (A.9). However, it is

difficult to obtain a stress distribution as a function of the in-plane coordinates x and y, and the thickness



S.-H. Lin et al. / International Journal of Solids and Structures 40 (2003) 5539–5564 5561
coordinate z to satisfy the local average stress equilibrium condition in Eq. (A.9) and the moment equi-

librium conditions in the x and y directions throughout the domain of the two strips of the two-strip

model. Note that we neglect the flexural effects since we only concentrate on the material element bordering

the nugget circumferential surface due to the observed failure mechanisms in Figs. 1 and 3. However, in
order to satisfy the local average stress equilibrium condition in Eq. (A.9) and the moment equilibrium

conditions, a much more complex stress state with the bending stress must be assumed for the material

element away from the circumferential surface. With the consideration of the bending stress, the normal

stresses such as rxx and ryy can no longer be assumed uniformly distributed through the thickness.

This leads to a plastic collapse conditions on a part of the thickness. Moreover, if we consider the flexural

effects away from the nugget circumferential surface, we should also consider the flexural effects for the

material element bordering the nugget circumferential surface. The distribution of the local moment

along the circumferential surface can be quite complex even under a relatively simple loading condition
such as the pure opening loading condition. But this will also lead to a collapse condition on a part of the

thickness. It seems that to develop a relative simple average stress and moment distribution to satisfy the

local equilibrium conditions including flexural effects is a formidable task. Therefore, we relax the local

equilibrium conditions and concentrate on the material element bordering the nugget circumferential

surface to satisfy the global equilibrium conditions in order to obtain an approximate closed form engi-

neering solution in the same spirit of the analysis of Merkle and Corten (1974). In this way, the engi-

neering solution will provide a basic form for the failure criterion in terms of appropriately normalized

resultants.
In this paper, we only consider the four thin layers bordering the lower half nugget in the four inde-

pendent regions as shown in Fig. 15. Note that Fig. 15 shows a top view of the two-strip model. The shaded

areas represent four independent regions. Dashed lines as shown in the figure represent four thin material

layers bordering the rigid lower half nugget. The approximate limit load analysis is conducted for these four

independent thin layers. Strictly speaking, the lower bound limit load analysis should be conducted with

statically admissible stresses in a finite domain instead of a thin layer with the equilibrium and traction

continuity conditions being satisfied. However, in order to develop a closed form engineering failure cri-

terion of spot welds for easy use, it is only feasible to conduct the approximate limit load analysis for the
four thin material layers bordering the weld nugget due to the complex stress state experienced by spot

welds under combined resultant force and moment conditions.
x

y

III

III IV

Fig. 15. A top view of the two-strip model for the lower half spot weld nugget. Four independent regions are marked as four shaded

areas. Dashed lines are shown in the figure to represent actually failure locations in each region.
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Appendix B. Stresses due to twisting moment Mz and plastic collapse conditions

Here, the difficulty of considering the twisting moment Mz in the approximate limit load analysis is

discussed. We assume that the twisting moment Mz is balanced by the shear stress rMz
rh with respect to the

cylindrical coordinate system. Considering the global equilibrium conditions, rMz
rh is written as
rMz
rh ¼ � Mz

2pr2t
¼ � 2Mz

pD2t
ðB:1Þ
The other two in-plane stresses rMz
rr and rMz

hh are assume as
rhh ¼ 0 ðB:2Þ

rrr ¼ 0 ðB:3Þ

The in-plane equilibrium equations are rewritten with respect to cylindrical coordinate system as
orrr

or
þ 1

r
orrh

oh
þ rrr � rhh

r
¼ 0 ðB:4Þ

orrh

or
þ 1

r
orhh

oh
þ 2rrh

r
¼ 0 ðB:5Þ
Substituting Eq. (B.1)–(B.3) into Eqs. (B.4) and (B.5) indicates that the in-plane equilibrium equations are

satisfied. There is no stress discontinuity surface for the stress distribution due to Mz for the material el-

ements near the nugget circumferential surface. Alternatively, the stresses for the material element bor-

dering the nugget circumferential surface can be referred to the Cartesian coordinate system as
rMz
xx ¼ �rMz

rh sin 2h ¼ 2Mz

pD2t
sin 2h ðB:6Þ

rMz
yy ¼ rMz

rh sin 2h ¼ � 2Mz

pD2t
sin 2h ðB:7Þ

rMz
xy ¼ rMz

rh cos 2h ¼ � 2Mz

pD2t
cos 2h ðB:8Þ
With consideration of the twisting moment Mz, the stresses rxx and ryy in the four thin layers bordering the

lower half nugget due to Px, Py and Mz as shown in Fig. 15 can be rewritten as
rxx ¼ rPx
xx þ rMz

xx ¼ � Px
2Dt

þ 2Mz

pD2t
sin 2h ðB:9Þ

ryy ¼ rPy
yy þ rMz

yy ¼ � Py
2Dt

� 2Mz

pD2t
sin 2h ðB:10Þ
Now the normalized effective stress ~sse in Eq. (45) can be rewritten with consideration of the twisting

moment Mz as
~ss2e ¼
1

3
ePP 2
x þ 1

3
ePP 2
y � 1

3
signðrPx

xxÞsignðrPy
yy ÞePPx

ePPy � ½signðrPx
xxÞePPx � signðrPy

yy Þ�ePPy
eMMz sin 2hþ eMM 2

z

þ signðrPz
xzÞaePPz

�
þ ePPx

4t
pD

� �
þ 2 eMMy

�2
þ signðrPz

yzÞð1
�

� aÞePPz þ ePPy
4t
pD

� �
� 2 eMMx

�2
¼ 1 ðB:11Þ
Here, signðrPx
xxÞ, signðr

Py
yy Þ, signðrPz

xzÞ and signðrPz
yzÞ still represent the signs of corresponding stresses in each

of the four regions as shown in Fig. 9. For a given monotonically increasing loading conditions when
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the moment Mz is zero, the plastic collapse condition will be satisfied for the material element bordering the

nugget circumferential surface in one, two or four of the four thin layers shown as dashed lines in Fig. 15,

based on Eq. (B.11). For a given monotonically increasing loading conditions when the moment Mz is not

zero, the yielding will first be satisfied at a material element bordering the nugget as one, two or four points
in the four thin layers at h ¼ p=4, 3p=4, 5p=4 or 7p=4. However, the initial yielding at a specific point in a

region cannot be considered as a plastic collapse of the region. Therefore, we cannot include the twisting

moment into our limit load analysis. The inclusion of the twisting moment Mz is introduced empirically by

including a quadratic term of M
2

z in the engineering failure criterion proposed in the main text based on the

experimental results.
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